On Using Results of Code-level Bounded Model
Checking in Assurance Cases

Carmen Carlan, Daniel Ratiu, and Bernhard Schétz

fortiss GmbH, Munich, email: carlan@fortiss.org
Siemens CT, Munich, email: daniel.ratiu@siemens.com
fortiss GmbH, Munich, email: schaetzQfortiss.org

Abstract. Software bounded model checkers (BMC) are today power-
ful tools to perform verification at unit level, but are not used at their
potential in the safety critical context. One reason for this is that model
checkers often provide only incomplete results when used on real code
due to restrictions placed on the environment of the system in order
to facilitate the verification. In order to use these results as evidence
in an assurance case, one needs to characterize the incompleteness and
mitigate the assurance deficits. In this paper we present an assurance
case pattern which addresses the disciplined use of successful but pos-
sibly incomplete verification results obtained through C-level bounded
model checking as evidence in certification. We propose a strategy to
express the confidence in incomplete verification results by complement-
ing them with classical testing, and to mitigate the assurance deficits
with additional tests. We present our preliminary experience with using
the CBMC model checker and the mbeddr environment to verify three
safety-critical software components.

Keywords: assurance cases, bounded model checking, confidence arguments

1 Introduction

Modern software model checkers are powerful enough to verify complex proper-
ties of programs at unit level. In the field of safety critical systems development,
formal verification is used only for highest critical functions and when it is highly
recommended by safety standards like IEC 61508 [2]. Instead, current functional
verification of software is mostly based on testing.

Figure 1 presents three fragments of an assurance case (in a Goal Structuring
Notation-like notation [3]) for the correct implementation of a safety require-
ment by a software component. In test-based verification (Figure 1-left-up), the
assurance of the correctness of the developed software is split into two parts:
the conformance of the implemented behavior with the test-suite demonstrat-
ing the wvalidity of the correctness claim with respect to the selected test case,
and the analysis of the coverage of the implemented behavior by the selected
test-cases demonstrating the confidence in the correctness claim. The required

2 Carmen Carlan, Daniel Ratiu, and Bernhard Schétz

Verification by testing

G Req. {R} is fulfilled by

|BackedBy

G Confidence: Tests

softw. component {SwC}

have adequate coverage

SupportedBy

SupportedBy

Verification by bounded model checking
complemented. when needed by classical testing

G Req. {R} is fulfilled by [BackedB:
softw. component {SwC}

G Confidence: Coverage
is higher than the
coverage of testing required

by {the relevant standard}

SupportedBy SupportedBy

s Coverage
analysis results

w s Coverage
analysis results

State of Practice

Verification by formal proof

|BackedBy

SupportedBy

G Bounded model checking
complemented, when needed,
by testing show that requirement
is correctly implemented

G Confidence: Proof is
adequate and trustworthy

G Req. {R} is fulfilled by
softw. component {SwC}

SupportedBy

S Formal proof S Review of the proof

State of the Art Our Approach
Fig. 1. Existing approaches for providing evidence in assurance cases: testing or formal
proofs (left); Our approach proposes to combine model checking with testing (right).

coverage grows with the assurance level, in case of the IEC 61508 from statement
via branch to MC/DC. In the case of verification by formal proofs (Figure 1-
left-down), one argues the confidence in the results by claiming adequacy and
trustworthiness of the proof as a demonstration that SwC' fulfills R.

The idea of splitting the argumentation in a part focusing on the conformance
of the implemented behavior with the requirements, and a part focusing on the
confidence [14] can also be applied in the verification which uses bounded model
checking (Figure 1-right). In this case, we split the argumentation into the proof
of the correctness of the implemented behavior with respect to a specification
under restricting assumptions, and the demonstration of sufficient confidence in
the respective restricting assumptions. If the confidence argument is not strong
enough, we propose to use classical testing for compensating the identified as-
surance deficits.

In this paper, we present an assurance case pattern which can be used at the
interface between developers, verification engineers, safety managers and third
party assessors to tackle the following questions: Q1) How can we use successful
verification results of software bounded model checkers as evidence for the cor-
rectness of the implementation of software components? Q2) How can we cover
the assurance deficits due to incomplete verification using classical testing? This
work is part of our efforts at fortiss GmbH and Siemens to enable practicing engi-
neers to use successful results of code level bounded model checking as evidence
for certification.

Contributions. We present a pattern to use successful, but possibly incomplete
bounded model checking verification results as evidence in assurance cases. In
case these verification results are incomplete, we develop a confidence argument
by comparing the input and the state coverage of incomplete model-checking

Code-level BMC in Assurance Cases 3

with coverage requirements for classical testing. We present our experience with
using bounded model checking on three real-world safety-critical software com-
ponents.

Structure of this paper. In Section 2, we present an assurance case pattern to
incorporate results of the bounded model checker-based verification as evidence
for assurance (Q1). In Section 3, we characterize the confidence in incomplete
verification results and the additional testing in an argument structure pattern
(Q2). In Section 4, we present our experience with verifying three software com-
ponents. In Section 5, we discuss variability points of our approach. The last two
sections contain the related work and conclusions.

2 Using BMC Results as Formal Verification Evidence

Testing is the state-of-the-practice verification method. However, safety stan-
dards recommend the usage of formal verification results as evidence for certi-
fication, because formal verification allows exploration of all possible behaviors
while assessing the satisfaction of a certain safety property. When complete ver-
ification is not possible, standards require that the limits of the coverage of the
performed verification are explicitly expressed. If bounded model checking is
used (as alternative verification method), DO-178C recommends the construc-
tion of an assurance case in order to argue the adequacy and trustworthiness
of the verification results for demonstrating that safety goals have been met. In
the following, we develop an assurance case pattern for arguing that the objec-
tive related to the functional correctness of a software module has been met by
bounded model checking accompanied by testing, when needed.

System under verification. Our focus is on code-level functional verification of
reactive software components. A software component (SwC') possesses an inter-
nal state, a set of input variables with different types I = {i1 : T1,...,in : T}
and a set of output variables. Each type T; defines a set of possible values which
can be taken by an input variable. Being a reactive system, the component is
called in a (possibly infinite) main loop. For each of the steps of the loop, each
of these input variables can take a different value — let i} denote the value of an
input variable i; at time step t. The value i} conforms to the type of 4;, namely
it € Ty.

Main Pattern. Figure 2 presents a pattern that captures the structure of an
assurance argument, which uses as evidence bounded model checking results
together with classical testing, if the verification is incomplete. Our top-level
goal G1 is that a software component SwC' implements a safety requirement
formalized as a property P, given the environmental constraints Env3v¢ (C0).
EnvS™Y assigns to each input variable its step-dependent range: EnvS*C (4;)(t) C
T;.

4 Carmen Carlan, Daniel Ratiu, and Bernhard Schétz

co Environment InContextOf | G1 Safety requi A InContextOf C1 Implementation of
— quirement {Req id}:
specification {EnVSWC} for the [<—— Softw. component {SwC} has property {P) software component
requirement ' {SwC}

C2 BMC Environment spec. | "C°™eX% Sirategy1 Argument by performing InContextof_ C3 Model checker:
for {SWC}: {EnveVc} / BMC (possibly comblned with testing) {model checker tool}
InContextOf
Supported®, SuPponedBy A1 Results from {model
/ Strategy2 / / Strategy3 / checker tool} tool are correct
Argument by complete Argument by incomplete BMC when it is used within its limits
BMC verification verification and testing
SupportedBy SupportedBy

| G2.1 Results of BMC demonstrate that property {P} holds | G3.1 Results of bounded model checking and
testing demonstrate that property {P} holds

To be developed

To be developed

Fig. 2. Main pattern for arguing that a software component implements a safety re-
quirement. The argument’s strategy is to use results from bounded model checking
verification complemented, when necessary, by testing.

Strategy 1: Argument by combining BMC with testing. Our strategy to decom-
pose the top-level goal is to use bounded model checking on the source code of the
component (C1), possibly combined, when needed, with testing. The bounded
model checker uses the environment definition Env®M¢ (C2), and the checking
is performed with a given model checker tool (C3). The environment definition
determines whether the verification is performed completely or just partially. As
an answer to our research question 1, there are two main possible outcomes
of the verification: either the verification is complete (in which case the pattern
is instantiated with the choice of Strategy 2); or, in the case when the system
under verification is too complex, compromises are made (i.e. environment re-
strictions and limited loop unwindings) and thereby the verification is incomplete
(in which case Strategy 3 is applied).

Strategy 2: Argument by complete verification using BMC. There are many
cases in which verification results obtained with bounded model checking are
complete. In these cases the functional correctness of the implementation of
property P by SwC' is guaranteed by the model checker itself. The bounded
model checking verification is complete when the environment constraining the
inputs of the model checker EnvBMC (verification harness) is relaxed enough to
cover all inputs of the environment EnvS"® specified by the requirement Reqld:
EnvSvC C EnvBMC 1In this case, the verification results can be used with the
highest confidence as evidence, under the assumption (A1l).

Strategy 3: Argument by incomplete BMC' verification and testing. Due to the
complexity of the system under verification, often exhaustive verification is not
possible, and the verification is performed under several restrictions of EnvSv¢,
namely EnvPM ¢ where |J EnvBM ¢ = EnvBMC There are two orthogonal di-
mensions in which the environment is restricted: 1) EnvBMC restricts the set of
possible values taken by the inputs of the software component, or, 2) EnvBM¢
restricts the number of steps which are used to verify the component. In both

Code-level BMC in Assurance Cases 5

cases, only a part of the space of behaviors is covered by the model checker.
Consequently, there are behaviors possible in the environment of the compo-
nent which are specified by the requirement (Env®“®), but not captured in
the verification environment (EnvBM¢). Thus, the assurance deficits caused by
incomplete verification must be accompanied by additional evidence in a confi-
dence argument. In the following section, we elaborate on the assurance deficits
of incomplete bounded model checking verification and how to compensate for
this deficits.

3 Confidence in Incomplete Results

Testing is the most common evidence for functional verification required by
safety certification standards. Thereby, in order to be accepted as evidence, the
results of a formal verification technique must be shown to be more trustworthy
than the results of testing required by the standards [13].

In Figure 3, we describe an argument structure pattern for combining incom-
plete bounded model checking verification with manually written tests. Intu-
itively, the main confidence argument is that the simplifying assumptions under
which the bounded model checking is performed are permissive enough to cover
test vector sets which satisfy the requirements of the certification standard. If
this is not the case, additional test-cases are added to cover the deficits of the
bounded model checking verification results (Q2).

Strategy 3 deals with incomplete bounded model checking verification (G3.1)
and additional manually written test cases (G3.2). The amount of additional

Strategy 3
Argument by incomplete verification and testing

SupportedBy SupportedBy SupportedBy

63';,1 PVis verified by BMC G32 G3.3: Confidence
Jr?g:zn{vig(;rslmvgﬁtl?estgi/ clions Property {P} is verified by Sufficient confidence exists in the trustworthiness
{Env®¥C) . {Enveic) testing of the results of BMC and additional testing
1 N

* SupportedBy

Strategy 4 Argument over each identified
backing evidence for the assurance
deficit caused by environment restrictions

i SupportedBy i SupponedBy/

There is sufficient confidence in the input values
coverage of the environment restrictions

/

G4.2 The confidence deficits are
mitigated by manually written test cases

SupportedBy SupportedBy SupportedBy SupportedBy
G411 G412 Testcases G4.2.1 The remaining G422
{Env®¥C} ... {Enve¥C } adequately generated by BMC considering environment black-spots are The uncovered code
cover the environment {Env"} environment restrictions considered by manually parts by the tests generated
To be developed | have sufficient code coverage written additional test cases with BMC are covered
p To be developed |by manually written test cases

To be developed

<{>To be developed

Fig. 3. Pattern for combining the incomplete bounded model checking results with
testing. We argue the confidence in bounded model checking results by comparison to
testing.

6 Carmen Céarlan, Daniel Ratiu, and Bernhard Schétz

testing should be enough to reach the required confidence (G3.3). The strategy
for arguing confidence (Strategy 4) is to explicitly mitigate the assurance deficits
caused by incomplete bounded model checking due to environment restrictions

(G4.1, G4.2).

Adequacy of environment partitioning. We argue that the sum of environment re-
strictions (EnvBMC . EnvPMC) adequately covers the environment EnvSw¢
(G4.1.1) — e.g., adequacy can be defined by IEC 61508, which recommends the
partitioning of the valid input domain in equivalence classes and the consider-
ation of boundary values. Environment black-spots (EnvvC \ EnvBMY) are
parts of the environment which were not covered by the environment definition
for the model-checker. These black-spots must be identified, made explicit in an
assurance case, and a mitigation method for the risk that they could lead to
bugs must be developed. The black-spots are considered by manually writing
additional test cases (G4.2.1).

Sufficiency of the code covered by bounded model checking Similarly to measur-
ing the code coverage of tests, we can measure the code covered by the bounded
model checker when it is run under the verification assumptions. To do this, we
use test case generation from the same environment as the verification. Test vec-
tors which satisfy required coverage criteria (e.g. statement, condition, MC/DC)
can be generated by the model checker starting from the environment definition
(G4.1.2). When the required coverage cannot be achieved, it is an indication that
the environment restrictions are too narrow. In this case, either the environment
must be relaxed such that the required coverage can be reached, or additional
test cases must be manually written (G4.2.2).

4 Preliminary Experience

In order to operationalize our approach we use the CBMC model checker [9]
integrated in the mbeddr development environment [18]. Besides checking asser-
tions, CBMC also possesses the needed capabilities to generate test cases with
a specified coverage. We use the same environment restrictions and CBMC set-
tings to perform the functional verification and to generate test cases. We use
mbeddr because it features a user friendly integration of CBMC.

In the following, we present our experience with the verification of three
software components, which implement critical functionality. The purpose of
our experiments is to investigate the extent to which bounded model checking
verification can achieve better coverage than classical testing on software com-
ponents. These experiments mirror the verification strategies proposed in the
patterns.

4.1 Traffic Collision Avoidance System

In our first experiment we verified a software component which implements part
of the Traffic Alert and Collision Avoidance System (TCAS) available from the

Code-level BMC in Assurance Cases 7

benchmark algorithms for testing [12]. The TCAS component implements a
highly critical functionality because its malfunctioning could lead to collision
of planes. The component uses as inputs the positions and speeds of the planes
and does not have internal state.

We have checked two properties of the system, namely PI1: Safe advisory
selection and P2: Best advisory selection, as in [12]. We have chosen to restrict
the values of the variables representing the tracked altitudes of the two planes,
based on the constraints on the valid inputs given by the TCAS standard [1].
CBMC managed to fully verify the specified properties under no additional input
restrictions in a few seconds and hence obtain 100 percent input coverage. This
experiment confirmed us the fact that, with bounded model checking, one can
provide, for certain cases, results of exhaustive verification much easier than with
any testing method.

4.2 Hamming Error Detection and Correction Algorithm

For our second experiment we chose to verify a commonly used algorithm for
detecting and correcting errors based on Hamming codes. We took an algorithm
which uses Hamming codes which is based on [16]. This algorithm is represen-
tative for a class of error detection and correction algorithms which are often
used as parts of the critical functions. Standards like IEC 61508 or ISO 26262
explicitly recommend the use of these algorithms for detecting data failures.
Figure 4 shows an example of a harness definition for the Hamming coding
algorithm using mbeddr. On the upper-left-hand side there is an initial definition

harness { harness {

for (uintlé i = 1;i <= size of info; i++) { for (uintl6 i = ?,1 <f size_of info; it++) {

nondet assign info[i]; constraints { nondet assign infoli]; comstraints {
. . . info[i] in [0..1]
info[i] in [0..1])

! }
4 encode message () ;
encode_message () ; rhonce Whether Fo indect Fhe errer or not

Jec © nondeterministic_choice:
nondet assign error pos; constraints { choice: {

error_pos in [l..size of transmitted data] inject error

}
transmitted_data[error_pms] = 1;

}

cmrrect_transmitted_message ()

for (uintlé i = 1;i <= size of info; i++) {
assert(info[i] == received infol[i]);

}

rrect error if n

ed

if (syn != 0) {
transmitted _data[syn] "= 1;

}

nondet assign error pos; constraints {
error_pos in [l..size of transmitted data]

}
transmitted datalerror_pos] “= 1;

}

choice: {

}

}
}

correct_transmitted message();

for (uintl6 i = 1;i <= size of info; i++) {
assert(info[i] == received infol[i]);

s

Fig. 4. Environment definition, error injection and verification condition for the Ham-
ming coding algorithm. On the left-hand an initial definition which prevented us to
reach branch coverage (left-bottom). On the right-hand side is the corrected environ-
ment definition which considers also messages without error.

8 Carmen Céarlan, Daniel Ratiu, and Bernhard Schétz

of the environment — at first we initialize the message to be sent (stored in binary
form in the vector info), then we encode this message using the Hamming algo-
rithm, we choose an arbitrary position where the error is injected (error_pos)
and correct the message. The verification condition checks that the initial mes-
sage is the same as the message decoded upon receival. This harness covers
exhaustively all possible vectors of size_of_info and all possible one bit errors
which can occur within the transmitted vector (transmitted_data contains the
information together with the corresponding parity bits).

When trying to generate test-cases with branch coverage based on this envi-
ronment, CBMC could not cover all branches — e.g. the branch from Figure 4-
left-bottom was always taken. Manual investigation revealed the fact that our
harness did not consider the case when no error happens during transmission. At
this point we could have either relaxed the verification environment or we could
have manually written some test cases to also verify the uncovered branch. We
chose to enhance the harness (Figure 4-right) with a non-deterministic choice to
inject /not-inject the error and thereby we could obtain a higher branch coverage.
In Figure 5, we present the running time required by CBMC for different lengths
of the message. We could exhaustively verify the correct functioning of the al-
gorithm for messages with a length up to 64 bits. Exhaustive testing of these
messages would require 2°® test-cases and thereby is completely unfeasible. Our
conclusion is that bounded model checking can be used to exhaustively check the
correctness of the algorithm for relatively small input messages. Correct encod-
ing of messages with a higher length could not be verified by the model checker
because the time step bound k was less than the diameter of the transition sys-
tem that abstractly models the program. In order to cover this assurance deficit,
the embedded engineers must manually write additional test-cases, which com-
ply with standards. This experiment shows that the bounded model checker can
exhaustively verify cases when the length of the input message is small enough.

number_of_parity_bits 4 6 7
size_of_info 11 bits|58 bits 121 bits
analysis time 2s 60s |> 600s (timeout)

Fig. 5. Time required by CBMC when choosing different lengths of the message to be
encoded. CBMC is fast up to messages with total length 64 bits (58 info + 6 parity).

4.3 Case Study 3: Patients Trolley

Our third experiment is the verification of a controller for a smart trolley which
assists healthcare professionals in drug administration and other bedside pro-
cedures. The smart trolley has several drawers and can serve multiple patients.
The trolley responds with different actions to the inputs given by a doctor. We
chose this system because 1) it is built as a state machine and can be run in-

Code-level BMC in Assurance Cases 9

finitely 2) it is a safety-critical system because, if it does not function properly,
the patient might get the wrong medicine, a fact which might endanger his life.

We chose two properties of the system to verify, namely: PI: There are never
two drawers open at the same time and P2: Only the drawers corresponding
to the selected patient can be opened. Both properties come directly from the
requirements specification document of the system. Figure 6-left shows the har-
ness definition for the property P1 — in the main loop we send an arbitrary
event to the state machine and we check that in between two events for opening
drawers (EVENT_OPEN_DRAWER) there is always an event for closing the drawer
(EVENT_DISPLAY_CLOSED). This only works under the assumption that there is
no transition that opens two different drawers at once. This assumption could
be checked by code reviewing. In Figure 6-right we present the harness definition
for P2. We check that the system opens only the valid drawers for a patient.

The state-machine can run infinitely, but we chose to restrict the number of
steps in the main loop and thereby the number of events that we send to the
state-machine. Thus we performed complete verification up to MAX_EVENT_NUMBER.
Even with a small value of MAX_EVENT_NUMBER we were able to cover all state-
ments of the state-machine. However, the trolley can run for much longer time,
and thereby our verification is incomplete. The assurance deficit occurs for long
runs of the trolley system. For these cases the developers must use additional
manual tests, which comply with standards. The patients trolley example shows
the usefulness of bounded model checker based verification on a reactive system
which runs infinitely.

harness {
1
for (i ++ in [0..MAX EVENT NUMBER[) {

harness {
boolean drawer already opened = false;

for (i ++ in [0..MAX EVENT NUMBER[) (| nondet.: assign crtievem:fid; constraints {
— = valid enum(crt event id)
nondet assign crt_event_id; constraints { |) = - -
valid_enum(crt_event_id) 1 if (crt _event id == EVENT PATIENT SELECTED) ({
} - nondet assign patient in; constraints {
2ll the system atient in in [1..3
executeEvent (crt_event_id); | } : B : :
proper only irawer can be open }
assert(! (drawer already opened && I if (crt_event_id == EVENT_DRAWER_SELECTED) {
lastEvent =; EVENT_aPEN_DRAWER)); | nondet assign drawer in; constraints {
drawer_in in [1..9]
if (state == STATE_DRAWER SELECTED) ({ i }
if (lastEvent == EVENT_OPEN_DRAWER) (1 }
drawer_already_opened = true; T X
} else if (lastivent == EVENT DISPLAY CLOSED) { f executeBvent (crt_event_id)
drawer_already opened = false; | N o “ . . .
' [| if (state == STATE_DRAWER_SELECTED) {
t assert(patient == 1 -> (drawer in [1..31));
} i assert(patient == 2 -> (drawer in [4..61));
} 1 assert(patient == 3 -> (drawer in [7..91));
|

}
}
;)

Fig. 6. Environment definition and verification condition for the Smart Trolley system:
on the left we check property P! and on the right we check property P2.

10 Carmen Carlan, Daniel Ratiu, and Bernhard Schétz

5 Discussion

On simplifying assumptions. In practice, there are a multitude of factors that
must be considered when analyses tools replace the execution of the tests on
the target hardware. For example, the C compiler used to produce the binary
from the sources might have itself bugs or have a different interpretation of
corner cases of the C language than the verification tool. Furthermore, hardware
particularities like the endianess, word length or memory model must be treated
soundly by the verification tool. These aspects are not in the scope of this paper,
but should be thoroughly considered during the development of a real-world
assurance case.

On automating the complementary testing. When the bounded model checking
is incomplete, we propose to cover the assurance deficits using manually written
test-cases. However, recent developments in verification based on conditional
model checking [7] are able to characterize the state space of the program covered
by the verification tool and use this information to generate test-cases for the
uncovered parts [10]. The information about the uncovered code parts can be
used in the confidence argument and part of the test vectors can be obtained in
an automatic manner.

On using tests vectors generation to measure confidence. One of the means we
proposed to measure the completeness degree of incomplete verification is to
generate test vectors starting from the same enviromental assumptions. How-
ever, empirical studies on the effectiveness of coverage-directed tests generation
to uncover bugs show disappointing results [17]. Thereby, structural coverage cri-
teria can indicate weaknesses in our assumptions (when these criteria are NOT
fulfilled) and offer only a weak confidence in the verification when the criteria
are fulfilled.

On practicality and costs. Our approach builds a bridge between two extreme
cases. The first case is when the model checker can explore the space of behaviors
exhaustively; the second case is when the model checker cannot produce any
meaningful result, even when a narrow environment is used. In the first case, the
verification is complete; in the second case, we rely completely on the results of
traditional testing. In this paper, we argue for a middle way to complement the
verification results with testing. Finding a sweet-spot, in which the cost-benefits
of applying formal verification is the highest, is of a paramount importance for
the adoption of the approach, especially for functions at lower criticality levels.

On using the CBMC bounded model checker. CMBC is still in need of verifica-
tion and validation in order to be used as assurance evidence generator. However,
the reason for using CBMC in our work is that it provides out-of-the-box fea-
tures which are key enablers for our approach. Firstly, the CBMC analyses are
bit-precise and thereby accurate. Secondly, CBMC offers the possibility to in-
strument loops (and recursion) to detect insufficient unwindings and to warn

Code-level BMC in Assurance Cases 11

about incomplete results. Thirdly, CBMC offers the function to generate tests
with a given code coverage and we use these tests as backing evidence for the
coverage degree of the bounded model checking verification. Last but not least,
CBMC allow the specification of verification environment. There are, however,
other bounded model checking tools which could be used instead of CBMC.

6 Related Work

Formal verification for assurance. Habli [13] and Denney [11] present a generic
safety argument for the use of formal methods results for certification. Basir
[5] proposes a method to derive safety cases from formally verified code using
Hoare-style inferences. Bennion [6] develops an assurance case for arguing the
compliance of the Simulink Design Verifier model checker to DO-178C. We pro-
pose an argument structure pattern for using successful, but possibly incomplete
bounded model checking results as certification evidence. For the cases when the
verification is incomplete, our pattern uses results of additional testing as evi-
dence and comprises a confidence argument.

Confidence of evidence. Habli [13] emphasizes the need of including all the known
limitations of the used formal verification technique in order to achieve trust in
the results. Hawkins [14] defines assurance deficits as a prohibiting factor of
perfect confidence in a claim about an assurance evidence. Ayoub [4] proposes
the usage of separate argumentation legs for arguing that certain confidence
exists in a certain assurance evidence. This is done by explicitly listing iden-
tified assurance deficits and the measures taken against them. They call these
argumentation legs confidence arguments. The usage of complementary diverse
evidence is encouraged by Littlewood [15], who demonstrates an increase of con-
fidence in the argument about the system safety when having both a verification
and a testing argument leg. We propose a confidence argumentation structure
for explicitly describing the assurance deficits of this verification method and for
providing corresponding backing arguments.

Complementing verification with testing. Conditional model checking [7] is a
technique to characterize the state space of the program which was covered by
the model checker and use this information for subsequent analyses or to gen-
erate test cases for the uncovered parts Czech[10]. Christakis [8] uses a similar
technique in order to explicitly specify all assumptions which the verification
engine performed and thereby, to enable collaborative verification. The focus of
these works is on making the deficits of model checking explicit and cover these
deficits by other verification methods. The above mentioned works are comple-
mentary to our work and they can be used to better characterize the confidence
in incomplete results, to increase the automation of the tests generation, or to
use other complementary verification methods to minimize the deficits.

12 Carmen Carlan, Daniel Ratiu, and Bernhard Schétz

7 Conclusions

In this paper, we presented an approach to use successful results of software
bounded model checking in an assurance case. We propose to use additional
testing to mitigate the possible assurance deficits of incomplete bounded model
checking. Our longer term goal is to enable practitioners who develop safety
critical systems to benefit from the bounded model checking technology. As
future work, we plan to investigate in detail heterogeneous backing evidence
from other verification methods (e.g., code review) to reinforce incomplete model
checking results.

Acknowledgments. The research leading to these results has received funding
from the European Union’s Seventh Framework Programme FP7/2007-2013 un-
der grant agreement n°610640.

References

Introduction to TCAS II version 7.1, November 2000.

International standard IEC 61508, 2008.

GSN community standard version 1. Technical report, Nov. 2011.

A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. A systematic approach to justifying

sufficient confidence in software safety arguments. In SafeComp, 2012.

5. N. Basir, E. Denney, and B. Fischer. Constructing a safety case for automatically
generated code from formal program verification information. In NFM, 2010.

6. M. Bennion and I. Habli. A candid industrial evaluation of formal software verifi-
cation using model checking. In ICSE, 2014.

7. D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler. Conditional model
checking: A technique to pass information between verifiers. In FASE, 2012.

8. M. Christakis, P. Miiller, and V. Wiistholz. Collaborative verification and testing
with explicit assumptions. In FM, 2012.

9. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In TACAS, 2004.

10. M. Czech, M. C. Jakobs, and H. Wehrheim. Just test what you cannot verify! In
A. Egyed and 1. Schaefer, editors, FASE. Springer, 2015.

11. E. Denney and G. Pai. Evidence arguments for using formal methods in software
certification. In WoSoCer, 2013.

12. A. Gotlieb. TCAS software verification using constraint programming. Knowledge
Eng. Review, 2012.

13. I. Habli and T. Kelly. A generic goal-based certification argument for the justifi-
cation of formal analysis. Electron. Notes Theor. Comput. Sci., 2009.

14. R. Hawkins, T. Kelly, J. Knight, and P. Graydon. A new approach to creating
clear safety arguments. In Advances in Systems Safety, 2011.

15. B. Littlewood and D. Wright. The use of multilegged arguments to increase confi-
dence in safety claims for software-based systems: A study based on a BBN analysis
of an idealized example. Software Engineering, IEEE Transactions on, 2007.

16. R. H. Morelos-Zaragoza. The Art of Error Correcting Coding. John Wiley & Sons.

17. M. Staats, G. Gay, M. Whalen, and M. Heimdahl. On the danger of coverage
directed test case generation. In FASE, 2012.

18. M. Voelter, D. Ratiu, B. Kolb, and B. Schétz. mbeddr: instantiating a language

workbench in the embedded software domain. Autom. Softw. Eng., 2013.

Ll

