
Extensible Debuggers for Extensible Languages

Domenik Pavletic1, Markus Voelter2, Syed Aoun Raza3,
Bernd Kolb3, and Timo Kehrer4

1 itemis, pavletic@itemis.de
2 independent/itemis, voelter@acm.org

3 itemis, {raza,kolb}@itemis.de.
4 University of Siegen, Germany kehrer@informatik.uni-siegen.de

Abstract. Language extension enables integration of new language con-
structs without invasive changes to a base language (e. g., C). Such exten-
sions help to build more reliable software by using proper domain-specific
abstractions. Language workbenches significantly reduce the effort for
building such extensible languages by synthesizing a fully-fledged IDE
from language definitions. However, in contemporary tools, this synthe-
sis does not include interactive debugging for programs written with the
base language or its extensions. This paper describes a generic framework
for extensible debuggers that enables debugging of the language exten-
sions by definig mappings between the base language and the language
extensions. The architecture is designed for extensibility, so debug sup-
port for future extensions can be contributed with little effort. We show
an implementation of our approach for mbeddr, which is an extensible
version of the C programming language. We also discuss the debugger
implementation for non-trivial C extensions such as components. Finally,
the paper discusses the extent to which the approach can be used with
other base languages, debugger backends and language workbenches.

Keywords: Debugging, Domain-Specific Languages, Frameworks

1 Introduction
A program source is a description of the program behavior. Source and behavior
are different: first, the source describes all dynamic execution behaviors of a
program as a static structure. Second, the source considers all possible sets of
input data. However, program execution always happens for a specific set of
input values. Debugging helps programmers to inspect and animate the dynamic
behavior of a program for a specific set of input values.

The way this is done depends on the language paradigm. Imperative lan-
guages, the focus of this work, use the step-through approach. Thus, users single-
step through instructions and observe changes to the program state.

Programming languages such as C, Java or Python contain a fixed set of lan-
guage construct and cannot easily be extended. The debuggers for such languages
can be hand-crafted specifically for the constructs provided by the language. In
contrast, modern language engineering allows the development of extensible lan-
guages [14, 13]. This allows users to add new constructs to a language in an
incremental and modular way. These languages are used to describe solutions



for technical or domain-specific problems on a higher level of abstraction. This
approach supports domain-specific validation and verification of developed sys-
tem at the same abstraction level as the problem. Thus it delivers improvements
in reliability.

The concepts (structure definition) introduced by a language extension are
translated to semantically equivalent base language code before compilation. For
example, a foreach statement that supports iterating over a C array without
manually managing the counter variable. This statement would be translated
back to a regular C for statement. The transformation generates the code that
manages the counter (see our example in Section 3).

To make debugging extensible languages useful to the language user, it is not
enough to debug programs after extensions have been translated back to the
base language (using an existing debugger for the base language). A debugger
for an extensible language must be extensible as well, to support debugging of
modular language extensions at the extension-level. Minimally, this means that
users can step through the constructs provided by the extension and see watch
expressions related to the extensions. In the foreach example, the user would see
the foreach statement in the source code. Furthermore, the generated counter
variable would not be shown in the watch window.

In this paper, we contribute a framework for building debuggers for exten-
sible, imperative languages. With this framework, each language extension is
debugged at its particular abstraction level. We illustrate the approach with an
implementation based on mbeddr [13], an extensible C build with the JetBrains
Meta Programming System (MPS) [8]. For a non-trivial C extension we show an
example debugger extension. Further, we discuss whether and how the approach
can be used with other extensible languages and language workbenches.

This paper is structured as follows: Section 2 provides an overview of the
mbeddr technology stack which is the basis of our reference implementation. In
Section 3, we introduce an example language extension for which we describe
the debugger extension in Section 6. Section 4 lists the requirements for our
extensible debugger and Section 5 describes the essential building blocks of the
architecture. We validate our approach by discussing debuggers for non-trivial
extensions of C in Section 7. In Section 8, we discuss the benefits, trade-offs
and limitations of our approach. We then look at related work in Section 9 and
conclude the paper with a summary and an outlook on future work in Section 10.

2 The mbeddr Technology Stack
mbeddr is an extensible version of C that can be extended with modular, domain-
specific extensions. It is built on top of JetBrains MPS and ships with a set of
language extensions dedicated to embedded software development. This section
provides a brief overview of mbeddr; details can be found in [13].
Fig. 1 shows how mbeddr is organized into layers. The foundation is MPS, which
supports language definition. Its distinctive feature is its projectional editor,
which unlike textual editors, does not rely on a parser. Instead, the visual no-
tation is a projection of the Abstract Syntax Tree (AST). This means, every
change performed by the user is directly reflected in the AST.



Fig. 1. An overview of the mbeddr stack.

The second layer (C Core) provides an implementation of C99[7]. The next
layers contain the default language extensions, generally useful for embedded
software development. These include languages for specifying test cases, state
machines, interfaces/components and decision tables.

3 Language Extension Examples

This section illustrates how to extend mbeddr with a foreach statement that
allows programmers to iterate over arrays. The code below shows an example:

1 int8[] numbers = {1, 2, 3};
2 int32 sum = 0;
3 foreach (numbers sized 3) { sum += it; }

Defining a language or extension in MPS comprises the following steps: structure
(syntax or meta model), the concrete syntax (editor definition in MPS), the
type system (for defining and checking typing rules), a generator (for mapping
extensions to the base language), various IDE features such as quick fixes or
refactorings, and of course the debugger. This section only discusses aspects
important for debugger definition. For a more detailed discussion of language
extension we refer to [13]. The debugger extension itself is shown in Section 6.

A particularly important feature of MPS as a language workbench is its
support for modular language extension, where an extension lives in its own
language module. While such a module may depend on (and use concepts from)
a base language, it cannot invasively change this base language.

In terms of structure, our foreach language consists of a ForeachStatement
and an ItExpression (dark grey boxes in Fig. 2). ForeachStatement extends
Statement to make it usable wherever C allows Statements. It consists of three
children: an Expression for the array, an Expression for the array length, and a
StatementList for the body. Expression, Statement and StatementList are
defined in C and reused by ForeachStatement. ItExpression represents the
current element and extends C’s Expression to make it usable where expressions
are expected.

Fig. 2. UML class diagram showing the structure of the language extensions. Concepts
from C are colored in white, others from foreach are dark grey.



The details on the transformation to C are described in [13]. For implementing
the debugger extension in Section 6, it is important to understand the struc-
ture of the generated code. The code snippet below shows an example usage of
foreach (left column) and the corresponding generated C code (right column).

1 int8 sum = 0;
2 int8[] sortedNumbers = {1, 2, 3};
3 foreach (sortedNumbers sized 3) {
4

5 sum += it;
6 }

int8_t sum = 0;
int8_t[] sortedNumbers = {1, 2, 3};
for (int __c = 0; __c < 3; __c++) {

int8_t __it = sortedNumbers[__c];
sum += __it;

}

4 Requirements on the Debugger
Debuggers for extensible languages should provide the same functionality as the
corresponding base language debugger. This includes debug commands (stepping
and breakpoints) and inspection of the program state (watches and call stack).

In general, the execution of a program is debugged by a base language de-
bugger (e. g., gdb in case of C). To enable debugging on the abstraction level of
extensions, a mapping must be implemented between the base language debugger
and the program as represented on the extension-level. Fig. 3 illustrates the re-
lationship and information flow between the extension and base-level debugging
mechanism: stepping must be mapped from the extension-level to the base-level
and the program state must be represented in terms of the extension-level. This
methodology is also applicable to hierarchical language extensions.

Fig. 3. Debugging interactions between extension- and base-level.

MPS allows the composition of multiple independently developed language ex-
tensions in a single program [12]. mbeddr capitalizes on this feature. Hence, pro-
grams are typically a mix of code written in C and in several language extensions
(the code snippet above uses concepts from C and the ForeachLanguage). A de-
bugger for such a language workbench should provide the capability to debug
mixed-language programs. Considering this, a debugger for extensible languages
should support the following general requirements GR1 through GR3:

GR1 Modularity: Language extensions are modular, so debugger extensions
must be modular as well. This means, to enable debugging for programs
developed with a particular language extension, no changes to the base lan-
guage must be necessary. Also, the debugger definitions for independently
developed language extensions must be usable together in a single program.

GR2 Framework Genericity: In addition, implementing debug support for
new language extensions must not require changes to the debugger frame-
work or its interfaces (not just to other languages, as described in GR1).

GR3 Ease of Extensibility: Language workbenches make language develop-
ment relatively simple. So, to make an extensible debuggers fit in, the devel-
opment of debugger extensions must be comparatively simple as developing
the language itself.



Depending upon the nature of the base language and its extensions, there can
be additional requirements for a debugger. mbeddr addresses embedded software
development, which leads to the specific requirements shown below. In other
domains, these concerns may be useful as well, whereas for embedded software
they are essential.

ER1 Limited Overhead: In embedded software, runtime overhead is always a
concern. So the framework should limit the amount of additional debugger-
specific code generated into the executable. Additional code increases the
size of the binary, potentially preventing debugging on target devices with
small amount of memory.

ER2 Debugger Backend Independence: Depending upon the target device
vendor, embedded software projects use different C debuggers. Re-implemen-
tion of the debugger logic is cumbersome, hence debugger backend indepen-
dence is crucial.

5 General Debugger Framework Architecture
The framework architecture can be separated into the specification aspect (Sec-
tion 5.1) and the execution aspect (Section 5.2). The specification aspect declar-
atively describes the debug behavior of language concepts and enables modular
extension of the debugger (GR1). The execution aspect implements the extensi-
ble debugger framework in a generic and reusable manner (GR2).

5.1 Specification Aspect

The debugger specification is based on a set of abstractions that can be split into
four main areas: breakpoints, stepping, watches and stack frames (see Fig. 4).
Debuggers are defined by mapping concepts from the base language and lan-
guage extensions to these abstractions. To map a language concept to any of
these abstractions, it implements one or more of these interfaces (other language
workbenches may use other approaches [9]). To specify the concept-specific im-
plementation behavior of such an interface, mbeddr provides a DSL (Domain-
Specific Language) for debugger specification (GR3; the DSL is shown in Sec-
tion 6). This way the approach facilitates modularity (GR1) by associating the
debug specification directly with the respective language concept.

Breakpoints Breakpoints can be set on Breakables. In imperative languages,
breakpoints can be set on statements so they will be mapped to Breakable.

Fig. 4. Abstractions for the debugger specification

Stack Frames StackFrameContributors are concepts that are translated
to base-level callables (functions or procedures) or represent callables on the



extension-level. They contribute StackFrames, each is linked to a base-level stack
frame and states whether it is visible in the extension-level call stack or not.

Stepping Steppable concepts support stepping, which is separated into step
over, step into and step out. For step over, a Steppable defines where pro-
gram execution must suspend next, after the debugger steps over an instance
of Steppable. Again, statements are the typical examples of Steppables in
an imperative language. If a Steppable contains a StepIntoable under it,
then the Steppable also supports step into. StepIntoables are concepts that
branch execution into a SteppableComposite, typically requiring its own stack
frame via StackFrameContributor. The canonical example in programming
languages are function calls (StepIntoable) and the corresponding functions
(SteppableComposite). Once we are in a SteppableComposite we may want
to step out ; hence a StackFrameContributor contributes step out behavior.

All stepping is implemented by setting breakpoints and then resuming ex-
ecution until one of these breakpoints is hit (this approach is adopted from
[16]). The actual stepping functionality of the underlying debugger is not used.
Steppables use DebugStrategies that determine where to set the base-level
breakpoints to implement a particular stepping behavior for an extension con-
cept. Language extensions can implement their own strategies (GR2) or use pre-
defined ones (GR3). For instance, to prepare for step over on the extension-level,
the SingleBreakpoint strategy retrieves for a node the first line of generated
base-level code and sets a breakpoint on it. This way no further dependencies to
other extensions are required, and extensions remain modular (GR1).

Watches WatchProviders can contribute entries to the debugger’s watch win-
dow. For example a local variable declaration whose value can be inspected
in the watch window. A WatchProviderScope is a nestable context in which
WatchProviders are declared and are valid e. g., two functions declaring local
variables. When suspending within any of them, the corresponding WatchPro-
viderScope causes the debugger to only show its local variables.

5.2 Execution Aspect

The framework relies on traces and the AST to provide the debug support. This
means no debugger-specific code should be generated into the executable (ER1).
Fig. 5 shows the components of the execution aspect and their interfaces to im-
plement this AST/trace-based approach: ProgramStructure provides access to
the AST via IASTAccess. Trace Data provides ITraceAccess that is used to
locate the AST node (base and extension-level) that corresponds to a segment
or line in the generated base-language code, and vice versa. The Low-Level
Debugger represents the native debugger for the base language. It provides
the ILLDebuggerAPI interface, which is used to interact with the Low-Level
Debugger (ER2). These interactions include setting breakpoints, finding out
about the program location of the Low-Level Debugger when it is suspended
at a breakpoint and access watches. Languages provide Debugger Extensions
(GR3), based on the abstractions discussed in Section 5.1. The IDebugControl
interface is used by the Debugger UI to control the Mapper which integrates



the other components. For example, IDebugControl provides a resume oper-
ation, IBreakpoints allows the UI to set breakpoints on program nodes and
IWatches lets the UI retrieve the data items for the watch window. All these
interfaces are used by the Mapper, which controls the Low-Level Debugger
and is invoked by the user through the Debugger UI. The Mapper uses the
Program Structure, the Trace Data and the debugging implementation from
the Debugger Extensions.

Fig. 5. The components of the execution aspect and their interfaces

To illustrate the interactions of these components, we describe a step over sce-
nario. After the request has been handed over from the UI to the Mapper via
IDebugControl, the Mapper performs the following steps:

– Ask the current Steppable for its step over strategies; these define all pos-
sible locations where the debugger may have to break after the step over.

– Query TraceData for corresponding lines in the generated C code for those
program locations.

– Set breakpoints via ILLDebuggerAPI on those lines in the low-level code.
– Use ILLDebuggerAPI to resume program execution. It will stop at any of the

just created breakpoints.
– Use ILLDebuggerAPI to get the low-level call stack.
– Query TraceData to find out for each C stack frame the corresponding nodes

in the extension-level program.
– Collect all relevant StackFrameContributors (see next section). The Mapper

uses them to construct the extension-level call stack.
– Get the currently visible symbols and their values via ILLDebuggerAPI.
– Query the nodes for WatchProviders and use them to create watchables.

At this point, execution returns to the Debugger UI, which then gets the current
location and watchables from the Mapper. With this information, it highlights the
Steppable on which execution is suspended and populates the watch window.

6 Example Debugger Extension

After discussing the architecture, this section now shows the implementation of
a debugger extension for the language described in Section 3. The specification
of the extension resides in the respective language module (GR1). As part of the



mbeddr implementation, we have developed a DSL for debugger specification
(GR3) that integrates directly with MPS’ language definition language. We use
this DSL for implementing the debugger extension in this section.

Breakpoints We want to be able to set breakpoints on a foreach statement.
Since both concepts are derived from Statement, we can already set breakpoints
on them; no further work is necessary.

Stack Frames The foreach statement does not have callable semantics and is
not generated to C functions (see Section 5.1). Hence, suspending the debugger
in a foreach statement affects not the number of stack frames in the call stack.

Stepping ForeachStatement is derived from Statement. Its implementation
for step over suspends the debugger on the Statement following the current
one. Statement realizes this by delegating the step over request to its surround-
ing SteppableComposite (ancestor in the AST). This SteppableComposite
simply sets a breakpoint on the next Steppable, which is again a Statement:

1 void contributeStepOverStrategies() { ancestor; }

We must overwrite this default behavior for the ForeachStatement, since its
stepping behavior differs. Consider we suspend our debugger on the foreach
that is shown in last snippet of Section 3 and perform a step over. If the array is
empty or we have finished iterating over it, a step over ends up on the statement
that follows after the whole foreach statement. Otherwise we end up on the first
line of the foreach body (sum += it;). This is the first line of the mbeddr pro-
gram, not the first line of the generated base program (which would be int8_t
__it = sortedNumbers[__c];). The debugger cannot guess which alternative
will occur since it would require knowing the state of the program and evalu-
ating the expressions in the (generated) for. Instead, we set breakpoints on all
possible next statements and then resume execution until we hit one of them —
the created breakpoints are then removed again. The code below shows the im-
plementation: we delegate the request to the surrounding SteppableComposite,
but we also set a breakpoint on the first statement in the body (if not empty).

1 void contributeStepOverStrategies() {
2 delegate to ancestor;
3 break at this.body.first; }

Let us look at step into. Since the array and len expressions of a foreach can
be arbitrarily complex and may contain invocations of callables (such as function
calls), we have to specify the step into behavior as well. This requires the debug-
ger to inspect the expression trees in array, len and find any expression that
can be stepped into. Such expressions implement StepIntoable. The following
code shows the step into implementation:

1 void contributeStepIntoStrategies() { inspect this.array, this.len for StepIntoables; }

Watches By default, the watch window contains all C symbols (global and
local variables, arguments) as supplied by the C debugger. In case of foreach,
this means the it expression is not available, but the two generated variables



__it and __c are. This is exactly the wrong way: the watch window should show
__it as it and hide __c. The code below shows the implementation in foreach:

1 void contributeWatchables() {
2 hide local variable with identifier "__c"
3 map by name "__it" to "it"
4 type mapper: this.array.type
5 }

Line 2 hides the C variable __c. The rest maps a base-level C variable to a
watchable. It finds the C variable named __it inserted by the foreach generator,
hides it and creates a watch variable named it. The type of it is the base type
of the array over which we iterate. This type is responsible for mapping the
value (type mapper), in our example above the int32 type simply returns the
C representation of an int32_t value.

To complete the implementation, we must implement WatchProviderScope
in foreach. This requires an implementation of collectWatchProviders to
collect instances of WatchProviders in a scope. foreach owns a StatementList
which implements this interface already and collects WatchProviders in the top-
level scope of the body. Hence, a foreach simply contributes itself (for hiding
__c and mapping __it), which is expressed with the following implementation:

1 void collectWatchProviders() { collect watch providers: this; }

7 Validation

To validate our approach, we have implemented the debugging behavior for
mbeddr C and most of its default extensions (components, state machines and
unit testing). This section discusses some interesting cases we have experienced
during implementation.

7.1 Polymorphic Calls
There are situations when static determination of a step into target is not pos-
sible e. g., polymorphic calls on interfaces. Our components extension provides
interfaces with operations, as well as components that provide and require
these interfaces. The component methods that implement interface operations
are generated to base-level C functions. The same interface can be implemented
by different components, each implementation ending up in a different C func-
tion. A client component only specifies the interface it calls, not the component.
So, we cannot know statically which C function will be called if an operation is
invoked on the interface. However, statically, we can find all components that im-
plement the interface (in a given executable), so we know all possible C functions
that may be invoked. A strategy specific for this case (GR2) sets breakpoints on
the first line of each of these functions. Consequently, we stop in any of them if
the user steps into an operation invocation.

7.2 Mapping to Multiple Statements
In many cases a single statement on the extension-level is mapped to several
statements or blocks on the base-level. So stepping over the extension-level state-
ment must step over the block or list of statements in terms of C. An example is



the assert statement (used in tests) which is mapped to an if. The debugger
has to step over the complete if, independent of whether the condition in the
if evaluates to true or false. Note that we get this behavior for free: we never
step actually over statements. In contrast, we set breakpoints at all possible code
locations where the debugger may have to stop next. The assert statement sets
a breakpoint on the base-level counterpart of the next extension-level statement.

7.3 Datatype Mapping

Language extensions may provide new data types in addition to the existing
base language data types. During code generation, these additional data types
are translated to the base language data types. In mbeddr, a trivial example for
this is the boolean type, which is translated to C’s int type. When inspecting
the value of a watchable that is of type boolean we expect the debugger to
render the int value either as true or false.

For mbeddr’s components a more complex mapping is needed. As shown in
the listing below, components can contain declarations for fields (instance vari-
ables e. g., color) and provided/required ports (interfaces e. g., tl and driver).
The code generator translates each component (e. g., TrafficLights) to a struct
declaration (e. g., CompModule compdata TrafficLights). This struct declara-
tion contains members (e. g., field color and port driver) for the declared fields
(e. g., color) and for each required port (e. g., driver).

1 component TrafficLights extends nothing {
2 provides ITrafficLights tl
3 requires IDriver driver
4 TLC color;
5 void setColor(TLC color) op tl.setColor {
6 color = color; }
7 }

struct CompModule_compdata_TrafficLights {
/* fields */
CompModule_TLC field_color;
/* required ports */
void* port_driver;

};

When debugging a component instance on the extension-level, we expect
the debugger to provide watches for the fields. They should have their respective
extension-level values and names. However, the members for the ports should not
be displayed. In the mapping implementation of component we must therefore
extract the fields from the respective struct instance and map the names and
their respective values.

8 Discussion
This section revisits the requirements outlined in Section 4 to evaluate to what
extent they are fulfilled:

8.1 Revisiting the Requirements

GR1 Modularity Our approach requires no changes to the base language or
its debugger implementation to specify the debugger for an extension. Also,
independently developed extensions retain their independence if they contain
debugger specifications. MPS’ capability of incrementally including language
extensions in a program without defining a composite language first is pre-
served in the face of debugger specifications.



GR2 Framework Genericity The extension-dependent aspects of the debug-
ger behavior are extensible. In particular, stepping behavior is factored into
strategies, and new strategies can be implemented by a language extension.
Also, the representation of watch values can be customized by querying the
type (e. g., consider our boolean type example).

GR3 Simple Debugger Definition This challenge is solved by the debugger
definition DSL. It supports the declarative specification of stepping behavior
and watches. However, it does not concern the user with implementation
details of the framework or the debugger backend.

ER4 Limited Overhead Our solution requires no debugger specific code at all
(except debug symbols added by compiling the C code with debug options).
Instead, we rely on trace data to map the extension-level to the base-level
and ultimately to text. This is a trade-off since the language workbench must
be able to provide trace information. Also, the generated C code cannot be
modified by a text processor before it is compiled and debugged. This would
invalidate the trace data (the C preprocessor works, it is handled correctly by
the compiler and debugger). On the contrary, we are not required to change
existing transformations to generate debugger-specific code. This keeps the
transformations independent of the debugger.

ER5 Debugger Backend Independence We use the Eclipse CDT Debug
Bridge [6] to wrap the particular C debugger. This way, we can use any
compatible debugger without changing our infrastructure. Our approach re-
quires no changes to the native C debugger itself. However, since we use
breakpoints for stepping, the debugger must be able to handle a reasonable
number of breakpoints. The debugger also has to provide an API for setting
and removing breakpoints and for querying the currently visible symbols and
their values. In addition, the API should allow us to query the code location
where the debugger is suspended. Most C debuggers support all of this, so
these are not serious limitations.

8.2 Other Evaluation Criteria
In addition to the specific requirements form Section 4, our approach can be
evaluated with regards to additional criteria.

Sizes and Efforts The ForeachLanguage consists of 70 lines of code. 17 of
them (25%) are related to the debugger. For the much more complex components
extension, the ratios are similar, although the language is ca. 2.500 lines of code.
We do not have numbers for the default extensions itself, since their debugging
implementation was mixed with the development of the debugger framework.
From these numbers we conclude that we have reached the goal of the debug-
ger specification for extensions not requiring significantly more effort than the
definition of the extension itself.

Multi-Staged Transformations The extensions described so far are directly
transformed to C. However, extensions may also be transformed to other lan-
guage extensions. Thus, forming a multi-level stack with high-level languages on
top and low-level languages at the bottom. Our current framework implemen-
tation provides debug support for such multi-level extensions as well. However,



for high-level extensions, the debugger must be specified relative to C and not
relative to the next lower-level extension. This is a limitation, since all transfor-
mations between the extension and the base language must be considered.

Use for other Base Languages The framework was designed and imple-
mented for mbeddr C. However, it contains no dependencies on mbeddr or on
the C implementation. The framework only assumes that the base language and
its extensions use the imperative paradigm with statements that can be nested
and embedded into callables. Consequently, debug support for other imperative
base languages can be implemented using our framework.

Use outside of MPS Our implementation cannot be used outside of MPS
since it depends on MPS’ APIs. However, the general approach can be adapted
to other language workbenches. According to Fig. 5, the tool has to provide
the following services: a debugger UI that lets users interact with the debugger,
access to the program and the language definitions as well as trace data.

9 Related Work

This section provides an overview of related research. We look at compile-time
debuggers, extensible debuggers and DSL debuggers.

Compile-time Debuggers Our approach animates and inspects the execu-
tion of a program. Other debuggers inspect the compilation or macro expansion
phase. Examples include Porkoláb’s debugger for C++ template metaprogram
compilation [11]. Furthermore, Culpepper’s stepper for the macro expansion pro-
cess in Scheme [4]. In mbeddr, the equivalent of compile time meta programs
or macros is the transformation of extensions to base language code. While not
discussed in this paper, MPS provides various ways of debugging the transfor-
mation process. This includes retaining all intermediate programs for inspection
as well as a debugger for stepping through the transformation process itself.

Cornelissen [3] describes an approach to enable debugging at two meta-levels
at the same time. Their work is based on the TIDE debugger framework [2] and
the ASF+SDF Meta-Environment [5]. One debugger debugs the execution of a
program written in the Pico language. At the same time, the interpreter defining
the semantics of the Pico language can be debugged as well. This is different
from our approach. We support integrated debugging of programs expressed
at different abstraction levels (C base language and the various extensions). In
contrast, Cornelissen supports debugging at different meta-levels.

Extensible Debuggers Extensibility can address different aspects of a de-
bugger, not just the extensibility of the base language as discussed in this paper.
Vraný and Ṕıse describe a debugger that integrates information from multiple
different debuggers into a common debugger UI. Consequently, providing an in-
tegrated execution flow [15]. This approach is similar to ours in that it considers
several languages. However, in our case, the languages are mixed within the same
program, extend a common base language and run in a single debug process.

The debugger described by Al-Sharif and Jeffery [1] can be extended with
user-defined program execution monitors. These monitors run concurrently, lis-



ten to debug events, such as breakpoint hit, and process them in user-definable
ways. May et al. introduce a debugger for parallel applications [10]. They provide
an API to integrate custom views. Those views can also access debug sessions,
but additionally, they contribute components to the debugger UI. Both works
address extending the debugging functionality for a fixed language. However, our
debugger provides a fixed functionality, but for extensible languages.

DSL Debuggers Wu et al. introduce a debugging framework for imperative,
declarative and hybrid DSLs [17, 16]. They integrate print statements into the
generated code that output debug symbols, such as values of watches or the
current source line. Based on this output, the debugger renders the UI. Our
debugger stores the mapping between high-level nodes and generated code in
a trace data structure. This information is created during the transformation
process. With this approach, we avoid instrumenting the program code, an im-
portant requirement for us (ER4). In the same work, Wu et al. also describe a
debugger for a simple assembler-like language. To implement step in and step
over in this language, they introduce the idea of using breakpoints. While they
use a mix of native stepping and breakpoints, we adapted their approach to use
only breakpoints. In addition, we add support for step out, based on a call stack.

Lindeman et al. introduce a generic debugger framework for DSLs [9]. Using
a debugger specification DSL, developers create event types and map the syntax
and semantics of a language onto an execution model. This is similar to our
approach, as we also provide a DSL to map language concepts to a execution
model (see Section 5.1). In Lindemann’s approach, a preprocessor integrates
debug symbols into the DSL program, based on the specified event types. In
contrast, our debugger uses external trace data to relate extension-level programs
to base-level programs, and ultimately to lines in the generated code.

10 Summary and Future Work

Extensible languages are a good compromise between general-purpose and do-
main-specific languages because they can grow towards a domain incrementally.
In addition, they enable validation and verification on the problem-level, by re-
ducing propagation of possible errors into base language code. To alleviate rest
of the errors, extension-level debugging is helpful. In this paper, we have intro-
duced a debugger framework for an extensible language. Furthermore, we have
demonstrated the feasibility by implementing debugging support for non-trivial
extensions for the mbeddr C language. The requirements regarding extensibility,
modularity and limitation of overhead outlined at the beginning of the paper
have all been satisfied. Further, efforts for implementing debugger extensions fit
well with the efforts for building the language extensions themselves.

In future, we will investigate the extent to which multiple alternative transfor-
mations for a single language concept require changes to the debugger framework.
We will explore synergies between the debugger and other language definition
artifacts such as transformations (watches) and the data flow graph (stepping).
Finally, we will investigate improved support for multi-staged transformations.



References

[1] Al-Sharif, Z., Jeffery, C.: An Extensible Source-Level Debugger. In: Proceedings of
the 2009 ACM Symposium on Applied Computing. pp. 543–544. ACM, Honolulu,
Hawaii, USA (2009)

[2] Van den Brand, M.G.J., Cornelissen, B., Oliver, P.A., Vinju, J.J.: TIDE: A
Generic Debugging Framework - Tool Demonstration. In: Electronic Notes in The-
oretical Computer Science. vol. 141, pp. 161–165. Edinburgh, UK (2005)

[3] Cornelissen, B.: Using TIDE to Debug ASF+SDF on Multiple Levels. Master’s
thesis, University of Amsterdam, Netherlands (2005)

[4] Culpepper, R., Felleisen, M.: Debugging Macros. In: 6th International Confer-
ence on enerative Programming and Component Engineering. pp. 135–144. ACM,
Salzburg, Austria (2007)

[5] van Deursen, A., Dinesh, T.B., van der Meulen, E.: The ASF+SDF Meta-
Environment. In: Proceedings of the 3rd International Conference on Methodology
and Software Technology. pp. 411–412. Springer, Enschede, Netherlands (1993)

[6] Eclipse Foundation: Eclipse CDT (2015), http://www.eclipse.org/cdt
[7] International Organization for Standardization (ISO): ISO C 99 Standard (1999),

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
[8] JetBrains: Meta Programming System (2015), http://www.jetbrains.com/mps
[9] Lindeman, R.T., Kats, L.C., Visser, E.: Declaratively Defining Domain-specific

Language Debuggers. In: 10th Conference on Generative Programming and Com-
ponent Engineering. pp. 127–136. ACM, New York, NY, USA (2011)

[10] May, J., Berman, F.: Panorama: A Portable, Extensible Parallel Debugger. In: 3rd
Workshop on Parallel and Distributed Debugging. pp. 96–106. ACM, San Diego,
California, USA (1993)

[11] Porkoláb, Z., Mihalicza, J., Sipos, A.: Debugging C++ Template Metaprograms.
In: 5th Conference on Generative Programming and Component Engineering. pp.
255–264. ACM, New York, NY, USA (2006)

[12] Voelter, M.: Language and IDE Development, Modularization and Composition
with MPS. In: 4th Summer School on Generative and Transformational Tech-
niques in Software Engineering. pp. 121–140. Springer, Braga, Portugal (2011)

[13] Voelter, M., Ratiu, D., Schaetz, B., Kolb, B.: Mbeddr: An Extensible C-based
Programming Language and IDE for Embedded Systems. In: Conference on Sys-
tems, Programming, and Applications: Software for Humanity, SPLASH ’12. pp.
121–140. ACM, New York, NY, USA (2012)

[14] Voelter, M., Visser, E.: Language Extension and Composition with Language
Workbenches. In: Companion to the 25th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications,
SPLASH/OOPSLA. pp. 301–304. ACM, New York, NY, USA (2010)

[15] Vraný, J., Ṕıse, M.: Multilanguagee Debugger Architecture. In: 36th International
Conference on Current Trends in Theory and Practice of Computer Science. pp.
731–742. Springer, Špindler̊uv Mlýn, Czech Republic (2010)

[16] Wu, H.: Grammar-Driven Generation of Domain-Specific Language Testing Tools.
In: Companion to the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005.
pp. 210–211. ACM, San Diego, California, USA (2005)

[17] Wu, H., Gray, J.G., Roychoudhury, S., Mernik, M.: Weaving a Debugging As-
pect into Domain-Specific Language Grammars. In: Proceedings of the 2005 ACM
Symposium on Applied Computing. pp. 1370–1374. ACM, Santa Fe, New Mexico,
USA (2005)

http://www.eclipse.org/cdt
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.jetbrains.com/mps

	Extensible Debuggers for Extensible Languages

