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ABSTRACT

We  present  the  motivation  and  an  approach  for  the
efficient  development  of  satellite  control  software
(flight  software,  onboard  software)  based  on  domain
specific  languages.  Significant  technological  advances
in the field of language workbenches have enabled us to
develop  extensions  to  the  C  programming  language
specific  to  the  needs  of  satellite  flight  software.  The
approach is very promising as it combines the flexibility
and  efficiency  of  the  C  language  with  high-level
abstractions known from modeling-tools and allows for
additional adaptation specific to the space domain.

 1. INTRODUCTION

Inefficiencies identified in earlier projects  give reasons
for improvement in various fields, including everything
from tools and processes to code reuse. Stepping back
and  reassessing  the  actual  needs  while  observing  the
current developments of embedded software technology
and the scientific community has brought up the idea of
developing  a  domain  specific  language  (DSL)  that
perfectly  matches  the  demands  of  satellite  control
software.
The  intention  behind  DSLs  is  to  concentrate  on  the
essence  of  a  domain  and  introduce  first-class
programming  language  constructs  with  semantics
closely  related  to  that  specific  domain.  Separation  of
concerns  is  achieved  by  introduction  of  various
(composable)  DSLs,  each  focusing  on  independent
concerns.  This  is  combined  with  the  idea  of  model
based  development,  where  a  model  serves  as  (single)
source  of  information  for  many  derived  artifacts
including  the  executable,  the  documentation  and
analyses etc. With the tools used the boundary between
the model and the implementation becomes increasingly
fuzzy.  Analysis  and  visualization  techniques  that  are
usually applied to the model become applicable to the
entire  implementation.  Additionally,  implementation-
level code refers directly to elements usually regarded
as part of the model.
Essentially,  a  single artifact (which is both,  the model
and  the implementation) is used to derive all required
representations,  including C code, documentation,  and
configuration.
The  following  steps  are  taken  to  achieve  this
improvement:
• identify the key issues that result in inefficiency
• identify the essential needs of the application domain
• identify the technology for improvement
• a prototypical implementation to prove the idea

They are described in the subsequent sections.

 2. KEY ISSUES IDENTIFIED

The  major  fundamental  issues  identified  in  recent
projects are related to both, tooling and process. Some
of  these  are  closely  related  to  the  selected  approach,
leaving  it  impossible  to  mitigate  within  an  ongoing
project.
Although tooling and processes are interrelated to some
degree by nature, some specific examples are discussed
in the following distinct subsections.
 
 2.1. Tooling

Model-based  design  tools  such  as  IBM  Rhapsody,
Enterprise Architect,  Sirius and others  define a model
by  composition  of  UML  elements,  creating  structure
and  behavior  diagrams.  These  are  enriched  with
manually  written  implementation  code  in  a  “regular”
programming language such as C or Ada. Structural and
skeleton  code is generated  from the UML model  and
manually written code is inlined. This duality of inline
code  and  the  model  specifically  makes  the
implementation  hard  to  maintain, debug,  document,
review  and  analyze  as  both  parts  are  only  loosely
coupled.  Specifically,  they  are  maintained  with  two
distinct tools.
Software  unit  tests  are  developed  and  executed  using
respective  tools  such  as  Cantata++  or  IBM  RTRT.
These test supporting tools in general  are not directly
interfaced  with the UML model,  thus they can't  draw
any information from the model that would support test
definition, quality, evaluation and reporting.
Software validation tests, as well as satellite validation,
AIT and  operational  procedures,  are  developed
technically  independent  from  the  satellite  control
software.  As  a  consequence  test  coverage  is  hard  to
determine and changes of the software are not directly
visible  to  the  various  stakeholders.  Maintaining  tests,
AIT  and  Ops  procedures  requires  elaborate  change
processes including iteration cycles and manual review.

 2.2. Processes

Information that is commonly used onboard  as well as
on-ground is maintained in a central data repository, the
Satellite Database (SDB). This central repository is used
as an external  model to the flight  software.  Code and
configuration data is generated from the SDB and linked
with the flight software  in a later step. Consistency of
the SDB content and the software technically can't  be
assured until the entire software is compiled, linked and
validated. As this is rather late in the process, bugs are
detected late and fixes are costly. 
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In order to be self contained and complete, the Satellite-
to-Ground  Interface  Control  Document  (SG-ICD)
contains – among other things – the definition of valid
commands,  parameters,  arguments,  attributes  and
possible failure codes, all of which are relevant to the
software development. In order to ensure full validation,
the SG-ICD commonly is made applicable as a source
of  requirements.  Since  large  parts  of  the  SG-ICD
including  the  failure  codes  are  driven  by
implementation  details  this  may  result  in  a  circular
dependency,  calling  for  requirement  change  requests
until very late in the process.

 3. ESSENTIAL NEEDS OF THE DOMAIN

The  high-level  essential  needs  that  a  satellite  control
software  development and maintenance process  has to
fulfill are  the  “usual  suspects”  of  optimizing  code
quality,  development  time,  cost-efficiency  and  V&V
effort while allowing late requirement changes and early
prototyping  (Faster,  Later,  Softer).  When  focusing on
the technical details of how to achieve these goals, the
arguments discussed  in the following are  split into two
groups:  design  and  development  considerations  and
generic building blocks of the software, called software
elements.

 3.1. Design and Development Considerations

As a  developer  you  are  generally  driven  by schedule
and cost and at some point in the project you just have
to “get it done”. As a consequence, a preferred way is to
base a software design on experience and heritage from
earlier systems and consolidate these with the customer
needs. On the other side you have to develop according
to (external)  guidelines,  nomenclature and  processes,
as  for  example  MISRA  [11],  OSRA  [7],  SOIS  [12],
PUS  [8]  as  well  as  company  coding  guidelines.
Introducing new rules and standards naturally requires
some  (learning)  effort  and  may  lead  to  hesitance  or
opposition.  To  successfully  introduce  and  apply  such
standards,  as  much  of  the  theoretical  background
imposed as possible needs to be made transparent to the
user.  Furthermore, user-optimized  IDE  support  with
respect to the applicable standards is appreciated.
The implementation must comply with quality criteria,
such  as  those  imposed  by  the  ECSS.  This  generally
includes  software  unit  testing,  validation  tests,
conformance  to  code  metrics  and  a  schedulability
analysis.  The software architecture and implementation
should  be  designed  with  respect  to  test  and  analysis.
This facilitates achieving the required quality standards
and  reduces  the  effort  needed  to  obtain  the  expected
level of quality.
A precise  and  detailed design  documentation,  a  user
manual, a  satellite-to-ground ICD and other documents
need to be provided and maintained.  It  is  crucial  that
these documents are always consistent with the actual
implementation.  Well-considered  structuring  and
writing and a large share of auto-generation is needed in
order  to  obtain  high-quality  documents.  Maintaining
significant  parts  of  the  documentation as  close  to  the
actual  implementation  as  possible  and  generating

figures  and  tables  directly  from  the  implementation
code supports this process.

 3.2. Software Elements

A number  of  software  building  blocks, elements  and
patterns are  very  common  to  any  satellite  control
software.  What follows is  a non-comprehensive  list of
such elements.
Component-based  software  design  is  state-of-the-art
and eases the test, validation and  reuse of the software
because  components  are self  contained  with  well-
defined  interfaces.  Recent  initiatives including  the
OSRA  and  SOIS  are  all  based  on  components.
Components comprise attributes and define functional
behavior that  may be exposed  and provided  to  other
components and/or ground.
Functionality commonly is described as a  sequence of
actions. Such sequences can be invoked internally from
the software as well as via telecommand from ground.
In general, sequences depend on functionality spread all
over  the  software  and  multiple  independent  or  inter-
related  sequences  may  be  executed  concurrently.
Actions (especially when accessing hardware)  may be
subject  to  hard  real-time  constraints  or  may  require
synchronization with external stimuli.
Periodic (e.g.  autonomous  functions and  checks)  and
aperiodic functionality (e.g.  telecommands and  other
external  stimuli)  needs  to  be  executed.  Typically  the
software comprises a base frequency  and a number of
derived frequencies  for execution of  distinct  and real-
time  sensitive  repetitive  functionality.  Additionally,
non-timing  critical  and  sporadic functionality  is
executed  concurrently. The  task  design  and  the
scheduling  scheme  and  algorithm  is  strictly  designed
according  to  the  requirements  of  the  timing  critical
actions and functions.
Commandability  and  observability  of  the  satellite  is
achieved  through  a satellite-to-ground  interface for
telecommanding and telemetry.  It is  typically  based on
the PUS [8] but proprietary protocols or (in the future)
CCSDS  MO  [9]  are  alternative  options.  Much
information,  such  as  the  types  and  numbers  of  the
arguments, describing telemetry and telecommanding is
required onboard as well as on-ground.
It has been shown to be advantageous to define modes
of operation  for the entire satellite  control software as
well as for its constituent components.  A mode in this
sense is a special component attribute used to affect the
components behavior in a consistent and common way.
For  example  telecommands  may only  be  executed  in
certain modes or periodic activities are always activated
in selected modes.
Last  but  not  least  a  well  elaborated  failure  detection,
isolation and recovery (FDIR) concept must be realized
supporting redundancy  schemes as required to achieve
the  needed  overall  reliability.  Incorporating  such  a
concept right from the beginning, when thinking about
the software architecture, is necessary but rarely done.



 4. DOMAIN SPECIFIC LANGUAGES

The  emerging  technology  of  Domain  Specific
Languages (DSL) and their development environments,
so called language workbenches, has great potential to
mitigate many of the listed inefficiencies and effectively
fulfill the essential needs outlined above. The essential
idea  is  to  concentrate  on  the  specific  needs  of  a
particular  domain  and  provide  efficient  means  for
expressing the solution of a problem in a language (or
more generally: by some distinct notation) known to the
domains professionals.  Aspects  of  the  implementation
that  are  self-evident  or  repetitive (in  that  specific
domain) are abstracted away. In practice the user (e.g.
the implementer) does not need to keep them in mind
and  is  able  to  focus  on  the  essential  objectives.  The
high-level  and domain specific  abstract  description of
the  software  objectives  is  automatically  transformed
into  various  concrete  representations  including
implementation  code,  documentation  or  input  for
analyses  tools.  Essentially  the  implementation  is  a
model comprising everything.
The  idea  behind  this  approach  is  fully  in  line  with
statements by F.P. Brooks in his paper "No Silver Bullet
– Essence and Accidents of Software Engineering" [5].
The idea of introducing a compiler for writing computer
programs in a human-readable language rather than in a
series of '0's  and '1's  is merely taken to a level where
even more accidental  complexity is removed from the
manual work share. This is achieved by shifting more
knowledge about the applications domain (which is how
to operate a satellite) into the language semantics.
Also the idea  addresses  the findings and proposals of
the NASA Study on Flight Software Complexity [10].
Once a DSL has been developed for the specific domain
of  satellite  control software,  the  gap  between
specification  and  implementation  in  our  projects  is
narrowed  significantly.  Fig. 1 illustrates the  great
advantages of this increase in abstraction.
Basically,  the software implementation focuses on the
essential  functionality  rather  than  on  the  details  of
realization.  A  well-designed  DSL  allows  describing
what  the  software  shall  do  without  the  possibility  to

introduce  ambiguities.  A  subsequent  transformation
process generates C code (in the case of satellite control
software)  that is compiled to the executable using the
established tool-chain. 

 5. MPS AND MBEDDR

Jetbrains'  Meta Programming System (MPS) [1] is a
language  workbench  [13] (DSL  Development
Environment) that is open source and freely available. It
applies projectional editing. This overcomes the limits
of language parsers and allows editors to include tables,
mathematical symbols and graphical diagrams. The user
directly  modifies  the  abstract  syntax  tree  (AST),
respectively  the  implementation  model,  which  is
projected onto the screen, see Fig. 2.

Different  visualizations can be selected,  depending on
the current  needs,  all  representing (parts  of)  the same
model.  Since  a  parser  is  not  engaged,  languages  are
composable  by  construction  and  can  be  arbitrarily
mixed in an implementation.

Figure 1: Pyramid of Abstraction

Figure 2: Projectional Editor



Languages  in  MPS consist  of  an  abstract  syntax  (the
structure),  a  type  system,  a  set  of  constraint  rules,
(multiple) editors and model-to-model as well as model-
to-text  transformations,  compare  Fig.3.  As  the  MPS
framework  is  open  for  extension,  it  can  be  easily
augmented to interface with various external tools. For
example, analysis tools are directly integrated and their
results  are  reported  in  the  editor.  The  AST  is  the
implementation  model  which  is  transformed  via  a
number of (model-to-model) transformation steps into a
textual  representation.  In  the  case  of  satellite  control
software this could be C code for further processing by
the  compiler.  During  the  transformation  process
available  MPS  languages  can  be  used  and  the  entire
model  is  available  for  queries  for  efficient
transformation results.
The mbeddr project [2] is based on MPS. It provides a
language in MPS that looks exactly like the C language,
has the same semantics and transforms into C code for
the compiler to process. The advantage of having the C
language  available  as  an  MPS  language  (called
mbeddrC)  is  that  it  is  now  possible  to  extend  the
language with domain-specific abstractions, while at the
same time being able to write low-level C code when
necessary. A number of such extensions including finite
state  machines,  documentation,  requirements  tracing,
model-checking,  visualizations  etc.  have  been
developed as part  of the mbeddr project.  The mbeddr
stack  of  extensions  is  shown  in  Fig. 7.  mbeddr  is

available  as  open  source  software,  professionally
maintained by Itemis AG [6] and has been successfully
applied within commercial projects as reported in [4].

 6. A PROTOTYPICAL IMPLEMENTATION

Based on the technology provided by MPS and mbeddr,
a set of DSLs is  currently being developed by OHB in
the  scope  of  R&D  activities.  The  DSLs  capture  and
efficiently  implement  the  crucial  elements  of  satellite
control  software.  Redundant  and  repeatedly  applied
aspects are captured in higher level abstractions (first-
class DSL constructs). The DSLs are modular in terms
of the addressed  concerns.  This,  together  with a  fully
integrated development environment providing state-of-
the-art  user  guidance  and  team  development  support,
results  in  a  highly  efficient  approach  to  software
development.
The DSL design is mainly influenced by heritage from
earlier projects carried out at OHB (Small Geo Platform
and Galileo), the ESA SAVOIR initiative OSRA [7] and
the  ECSS  Packet  Utilization  Standard  (PUS)  [8].
Programs  written  in  the  DSLs  are  compliant  to  the
ECSS standards and quality requirements.
According to the list of software elements as presented
in section  3.2 the mbeddrC language is extended with
higher  level  concepts.  Appropriate  structure,  editor
rules, type system and constraints are defined. Finally,
transformation rules are defined for generating C code
and documentation.

Figure 3: Language Definition

Figure 4: mbeddr Stack of Extensions



Figure 6: Thermal Control Component

Figure 5: Temperature Acquisition Component
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Components  as  basic  structural  element  and  their
instances  are  first-order  constructs.  Besides  other
elements  the  components  contain  attributes,  mode-
charts and activities. Fig.5 and 6 show screenshots of an
implementation  based  on  DSLs  extending  the  C
language. Everything that does not look like C belongs
to a language extension. The used  elements are briefly
described in the following. 
Fig.5 depicted  the  implementation  of  component
TemperatureAcquisition  and  two instances
of  this  component  .  The  component  is  assigned  a
mnemonic (TACQ) that is reused and augmented with a
mnemonic tail (A and B) by the instances. The resulting
component instances' mnemonics (TACQA and TACQB)
are derived and projected into the editor. For addressing
purposes  unique  numeric  Ids  (350 and  351)  are
provided  with  the  instances.  The  component
implementation   comprises  mandatory  (short  and
regular)  description  fields  which  are  required  for  the
generated documents. The component is assigned to the
EPL.PDF (Platform Devices) layer  which  is
one of several predefined layers and has the same intent
as that defined in the OSRA  . The layer technically
(enforced by the editor) restricts access to other layers'
component instances.
Furthermore the component defines three attributes  ,
by convention (and technically enforced by the editor)
they are all capital letters. They act as variables local to
the component instance which may be configured to be
accessible by ground via a dedicated Service.  For this
purpose, attributes are marked either 'hidden', 'readonly'
or  'readwrite'  and  –  if  not  hidden  –  are  assigned  a
numerical Id for  identification via the space-to-ground
protocol.  Note that the entire data pool maintaining the
attribute values  and their  access  by other  components
and via telecommands from ground (PUS 3 and PUS 20
services) is not mentioned here. It is abstracted from the
DSL-level implementation and generated during model-
to-model  transformations.  Thus,  the  implementation
only  focuses  on  the  essential  concern,  which  is  the
provision  of  an  attribute.  Like  a  regular  C  variable
declaration an attribute is assigned a data type and may
be initialized.  The editor requires the implementer to
add  documentation.  An  attribute  can  be  initialized
differently for each component instance. In the example
the  attribute  SENSOR (which  is  of  enum  type
tempSensor)  is  initialized  differently  for  both
instances.  Together  with  the  instance's  mnemonic  the
attributes are uniquely addressed in a hierarchical way
using a dot expression syntax  .  In  the example the
attribute  AVTEMP from instance  PUS150 is  accessed
(see Fig. 6 for its definition).
The yellow annotation /rawTemp/  to the datatype
of the array is part of a language extension that allows
associating a physical unit to the values carried in this
variable.  Here  the  value  represents  a  raw  value  read
from  the  thermal  sensor.  In  Fig. 6 attributes  are
associated with centigrade . 
The  ModeChart statement   implements  a  simple
kind  of  state-chart  efficiently  capturing  the  idea  that
every component  may reside  in  an  operational  mode.
This mode is changed by dedicated statements invoked

in the activities . The ModeChart in Fig.5 defines two
modes (OFF and ON) and a trigger. Mode OFF does not
define any behavior, but mode  ON has an entry action
and  an  action  that  is  associated  with  the  trigger
tcsAcquisition.  When  entering  this  mode  the
(hidden)  attribute  ACQCNT  is  initialized.  When  the
trigger is invoked (by a periodical task/thread not shown
here) a temperature value is read from the sensor and an
average  of  the  last  10  measurements  is  calculated.
While invoking a function for reading the temperature
value, calculating the index and accessing the array for
storing 10 values is regular C code the calculation of the
average  temperature  uses  an  extension  that  provides
mathematical symbols . This extension allows

to be an expression that is transformed into a respective
loop  for  doing  the  calculation.  Projectional  editing
allows the mathematical symbol to be made visible in
the editor. The mathematical formula is wrapped with a
convert[ … → °C] statement.  This is part  of the
language extension that provides physical units as used
at  .  It  converts the value from  rawTemp to  °C as
defined  for  example  in  the  following  sketched
conversion rule:

If expressions  are  assigned  to  variables  with  a  non-
matching physical unit the typing rules of the language
extension  report  the  error  in  the  editor  directly  at
implementation time. 
Functionality is implemented by  ActivityS  inside a
component.  The  activities  shown  in  Fig.5 are  rather
simple and their representation in the editor is folded for
brevity . 
Fig.5 shows a simplified component for acquisition of
temperature  values  and  calculating  an  average.  Two
instances  of  this  component  are  realized.  The
component  shown  in  Fig. 6 uses  these  instances,  it
realizes  a  very  simple  thermal  control  system  that  is
able to use either one of the component instances for
acquisition.
The component ThermalControlSystem as shown
in  Fig. 6 implements  a  service  according  to  the  PUS
standard.  The  component  statement  is  marked
accordingly and is provided with a PUS type (150). In
order  to  make  this  more visible  in  the  editor,  the
background  is  colored  yellow.  Services  are  only
instantiated  once  and  their  mnemonic  is  PUSxxx
where  xxx is  the  assigned  PUS  type  .  The
component  is  assigned  to  the  AL (Application
Layer) and  as  such  is  allowed  to  access  the
TemperatureAcquisition instances  assigned  to
the Platform Devices Layer .
The ThermalControlSystem component defines a
ModeChart. It is visualized in Fig. 7. The visualization
is  generated  directly  from  the  implementation  by
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invoking an external tool from within the IDE. It – by
nature – is always consistent with the implementation,
such that code review actually can be carried out using
the printed documentation.

Figure 7: ModeChart

In  mode  OFF the  control  is  inactive.  In  mode  ON it
reacts  on  the  trigger  tcsControl,  which  is
periodically  invoked  in  the  context  of  a  periodic
task/thread.  In  this trigger  action the commanding for
the  heater  lines  is  determined  by  comparison  of  the
average  temperature  PUS150.AVTEMP with  the
thresholds  PUS150.LOTH and  PUS150.UPTH.  The
comparison  and  the  resulting  heater  command  is
realized  using  a  language  extension  that  provides  a
decision  table  .  Depending  on  the  boolean
expressions on the rows and columns a value is selected
and  returned.  The  shown  example  is  a  very  small
decision table.  The mentioned component attributes  
are associated with the physical  unit  °C ensuring that
the check is carried out on comparable values.
The  ThermalControlSystem service  defines  two
activities that  define functionality  .  Each activity is
assigned a numerical id, name and description fields. As
there  is  only  a  single  instance  of  this  component
(service)  its  activities  can  be  marked  a  telecommand.
The  telecommands  PUS  compliant  type  identifier  is
derived from the services numerical id by definition and
the  subtype  identifier  is  the  activities
numeric id .
An activity may be constrained by a set of
boolean expressions , only if all of them
evaluate to true when invoked, the activity
is actually executed. If an invoked activity
does not fulfill  a constraint a failure code
is  returned  instead.  The  failure  code  is
unique and derived from the numerical ids
assigned  to  the  component  instance  and
the  activity  according  to  the  structure  of
the software.  In the example the mode of
the ModeChart  TCSCONTR is required to
be  OFF or  ON,  respectively. An  activity
can define input and output parameters ,
telecommands  are  restricted  to  input

parameter due to limitations of the PUS. Such parameter
are typed and mandate a description field. In-parameters
may define a constraint, for validity checking. The in-
parameter  constraint  is  a  boolean  expression and  acts
similarly to  the  activities' constraint.  In  the  example
activity  shown,  TC(150,1)enableTcs is  only
executed with the components mode being OFF and the
passed in-parameter  upperThreshold is larger than
the passed in-parameter lowerThreshold.

The  invocation  of  activities  is  according  to  the  MO
MAL  interaction  pattern  [9].  Based  on  an  execution
framework  middleware,  the  activities  are  invoked
asynchronously.  The  adaptation  to  the  middleware  is
generated  as  part  of  the  transformation  process.
Depending on the middleware the software is expected
to  be  operated  with,  different  sets  of  transformation
rules  may  be applied.  The  implementation  itself  is
designed independently of the middleware. In Fig. 6 the
activity  enableTcs uses  the  REQUEST  pattern  to
invoke  the  startAcquisition activity  of  the
addressed  TemperatureAcquisition component
instance . The REQUEST pattern allows in- and out-
parameters  to  be  transmitted  and  the  respective
statement  may specify  a  block  of  code  that  is  to  be
executed if a failure indication is returned. The control
flow requires the invoked activity to complete execution
prior to the invoking activity to continue.  In  contrast,
the SEND pattern  asynchronously invokes  an  activity
and does not wait for any acknowledge. Fig. 8 shows a
sequence  diagram  visualizing  the  telecommands
implementation.  Again,  this  picture  is  generated  from
the implementation using an external tool from within
the IDE.
The telecommand (TC) Dispatcher  is  not shown in the
code.  It  is  aware  of  all  telecommands  defined  in  the
software  by  querying  the  implementation.  Via  model
transformation  the  needed  telecommand  dispatching
harness is generated, enabling invocation of the activity
via TC packets received.
The activity delays enabling of the thermal control by
10  seconds  using  the  DELAY statement  ,  which
transforms into respective delay functionality provided
by  the  framework.  The  last  statement  of  the
telecommand  shown  in  Fig. 6 is  the  TELEMETRY
statement  .  It  defines  a  telemetry packet  (again,
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according  to  PUS)  by  specifying  a  mandatory
description,  a  subtype  (the  type  is  inherited  from the
embracing service) and a list of typed parameters. Only
this  statement  defines  the  telemetry  packet,  other
occurrences merely refer to it. During code generation
this statement is transformed into an activity invocation
according to the SEND pattern. The activity responsible
for  preparing  and  transmitting  a  telemetry packet  is
invoked as  shown in  the  sequence  diagram in  Fig. 8.
The corresponding arrow in the figure is annotated with
“queue=10”. This indicates that the activity provides a
queue, allowing different parts of the software to invoke
the  activity  and  respective  invocations  being  queued.
Again, the concrete realization of the queue is not part
of the implementation, it  is part  of the transformation
rules  defined  in  the  DSL statement  with respect  to  a
selected middleware.
From the implementation not  only executable code is
generated.  As  briefly  summarized  in  Fig. 9,  other
aspects  are  covered  also.  A  dedicated  DSL  allows
efficient  requirement  tracing,  state-of-the-art  software
revisioning  enables  efficient  team  collaboration  and
issue tracking. The implementation serves as source for
documentation generation and the configuration of the
(ground-)  operator  software  system.  Dedicated  DSLs
are  developed  for  the  inclusion  of  unit  tests  and
analyses.  While  mbeddr  already  provides  means  to
show formal  properties  of  certain  state  machines  and
decision  tables,  we  are  currently  working  on  a  DSL
linking  the  implementation  with  static  worst  case
execution time (WCET) and schedulability analysis.

Figure 9: Linked and Generated Aspects

As  the  implementation  contains the  entire  design
information and arbitrary queries can be executed, it is
feasible  to  simplify  the  data  dependencies  and  as  a
consequence the overall  workflow. Circular and overly
complex  process-related  dependencies  with  respect  to
the Satellite-to-Ground ICD and the Satellite Database
as described in section 2.2 are simplified.

 7. SUMMARY AND OUTLOOK

A  significant increase  in  development  efficiency  and
quality  is  achievable  when  the  focus  of  work
concentrates on essential  aspects  and recurring efforts
are abstracted.
In  recent  years  the  technology  of  domain  specific
languages  and  language  workbenches  has  reached  a
level of maturity that allows its application in the field
of embedded, real-time, mission-critical flight software

of spacecraft.  In  addition to  what  is  accomplished by
libraries,  language  extensions  provide  custom  syntax
and type systems as well as the possibility to introduce
static  error  checking.  Context  sensitive  model-to-code
transformation  allows  for  optimized  code  generation
resulting  in  run-time  and  memory  efficient  code.
Compared  to  other  concepts  the  approach  is  non-
disruptive  as  it  builds  upon  the  C  language  and
experienced  developers  feel  comfortable.  Established
tools  and  analyses  can  be  introduced  smoothly.  The
projectional  editing  and  introduction  of  higher  level
abstractions  cause  the  concepts  of  modeling  and
implementing  to  become  somewhat  blurred,  taking
advantages from both.
The  work  carried  out  and  prototype  developed  has
shown  that  the  approach  and  the  tooling  is  very
promising. It bears great potential for improving current
workflows.  Up  to  the  present  and  while  significant
elements and aspects of satellite control software have
not been tackled, the full advantage has not been drawn
from  the  approach.  Nevertheless,  the  DSL  based
approach of embedded software development has been
reported very successful  in a commercial  environment
[4].  It  is  expected  to  achieve  improvement  results  of
similar magnitude and quality.
The next step  in evaluation  is to cover the entire life-
cycle  (requirements  engineering,  architecture design,
implementation, validation and operation) and all major
functional  aspects  of  in an exemplary  satellite  control
software implementation.
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