
DOMAIN SPECIFIC LANGUAGES FOR EFFICIENT
SATELLITE CONTROL SOFTWARE DEVELOPMENT

Andreas Wortmann, Martin Beet

OHB System AG, Universitätsallee 27-29, 28359 Bremen, Germany,
Email: andreas.wortmann@ohb.de Tel.: +49 (0)421 2020-9815

ABSTRACT

We present the motivation and an approach for the
efficient development of satellite control software
(flight software, onboard software) based on domain
specific languages. Significant technological advances
in the field of language workbenches have enabled us to
develop extensions to the C programming language
specific to the needs of satellite flight software. The
approach is very promising as it combines the flexibility
and efficiency of the C language with high-level
abstractions known from modeling-tools and allows for
additional adaptation specific to the space domain.

 1. INTRODUCTION

Inefficiencies identified in earlier projects give reasons
for improvement in various fields, including everything
from tools and processes to code reuse. Stepping back
and reassessing the actual needs while observing the
current developments of embedded software technology
and the scientific community has brought up the idea of
developing a domain specific language (DSL) that
perfectly matches the demands of satellite control
software.
The intention behind DSLs is to concentrate on the
essence of a domain and introduce first-class
programming language constructs with semantics
closely related to that specific domain. Separation of
concerns is achieved by introduction of various
(composable) DSLs, each focusing on independent
concerns. This is combined with the idea of model
based development, where a model serves as (single)
source of information for many derived artifacts
including the executable, the documentation and
analyses etc. With the tools used the boundary between
the model and the implementation becomes increasingly
fuzzy. Analysis and visualization techniques that are
usually applied to the model become applicable to the
entire implementation. Additionally, implementation-
level code refers directly to elements usually regarded
as part of the model.
Essentially, a single artifact (which is both, the model
and the implementation) is used to derive all required
representations, including C code, documentation, and
configuration.
The following steps are taken to achieve this
improvement:
• identify the key issues that result in inefficiency
• identify the essential needs of the application domain
• identify the technology for improvement
• a prototypical implementation to prove the idea

They are described in the subsequent sections.

 2. KEY ISSUES IDENTIFIED

The major fundamental issues identified in recent
projects are related to both, tooling and process. Some
of these are closely related to the selected approach,
leaving it impossible to mitigate within an ongoing
project.
Although tooling and processes are interrelated to some
degree by nature, some specific examples are discussed
in the following distinct subsections.

 2.1. Tooling

Model-based design tools such as IBM Rhapsody,
Enterprise Architect, Sirius and others define a model
by composition of UML elements, creating structure
and behavior diagrams. These are enriched with
manually written implementation code in a “regular”
programming language such as C or Ada. Structural and
skeleton code is generated from the UML model and
manually written code is inlined. This duality of inline
code and the model specifically makes the
implementation hard to maintain, debug, document,
review and analyze as both parts are only loosely
coupled. Specifically, they are maintained with two
distinct tools.
Software unit tests are developed and executed using
respective tools such as Cantata++ or IBM RTRT.
These test supporting tools in general are not directly
interfaced with the UML model, thus they can't draw
any information from the model that would support test
definition, quality, evaluation and reporting.
Software validation tests, as well as satellite validation,
AIT and operational procedures, are developed
technically independent from the satellite control
software. As a consequence test coverage is hard to
determine and changes of the software are not directly
visible to the various stakeholders. Maintaining tests,
AIT and Ops procedures requires elaborate change
processes including iteration cycles and manual review.

 2.2. Processes

Information that is commonly used onboard as well as
on-ground is maintained in a central data repository, the
Satellite Database (SDB). This central repository is used
as an external model to the flight software. Code and
configuration data is generated from the SDB and linked
with the flight software in a later step. Consistency of
the SDB content and the software technically can't be
assured until the entire software is compiled, linked and
validated. As this is rather late in the process, bugs are
detected late and fixes are costly.

Proc. ‘DASIA 2016’, DAta Systems In Aerospace
Tallinn, Estonia, 10-12 May 2016 (ESA SP-736, August 2016)

mailto:andreas.wortmann@ohb.de

In order to be self contained and complete, the Satellite-
to-Ground Interface Control Document (SG-ICD)
contains – among other things – the definition of valid
commands, parameters, arguments, attributes and
possible failure codes, all of which are relevant to the
software development. In order to ensure full validation,
the SG-ICD commonly is made applicable as a source
of requirements. Since large parts of the SG-ICD
including the failure codes are driven by
implementation details this may result in a circular
dependency, calling for requirement change requests
until very late in the process.

 3. ESSENTIAL NEEDS OF THE DOMAIN

The high-level essential needs that a satellite control
software development and maintenance process has to
fulfill are the “usual suspects” of optimizing code
quality, development time, cost-efficiency and V&V
effort while allowing late requirement changes and early
prototyping (Faster, Later, Softer). When focusing on
the technical details of how to achieve these goals, the
arguments discussed in the following are split into two
groups: design and development considerations and
generic building blocks of the software, called software
elements.

 3.1. Design and Development Considerations

As a developer you are generally driven by schedule
and cost and at some point in the project you just have
to “get it done”. As a consequence, a preferred way is to
base a software design on experience and heritage from
earlier systems and consolidate these with the customer
needs. On the other side you have to develop according
to (external) guidelines, nomenclature and processes,
as for example MISRA [11], OSRA [7], SOIS [12],
PUS [8] as well as company coding guidelines.
Introducing new rules and standards naturally requires
some (learning) effort and may lead to hesitance or
opposition. To successfully introduce and apply such
standards, as much of the theoretical background
imposed as possible needs to be made transparent to the
user. Furthermore, user-optimized IDE support with
respect to the applicable standards is appreciated.
The implementation must comply with quality criteria,
such as those imposed by the ECSS. This generally
includes software unit testing, validation tests,
conformance to code metrics and a schedulability
analysis. The software architecture and implementation
should be designed with respect to test and analysis.
This facilitates achieving the required quality standards
and reduces the effort needed to obtain the expected
level of quality.
A precise and detailed design documentation, a user
manual, a satellite-to-ground ICD and other documents
need to be provided and maintained. It is crucial that
these documents are always consistent with the actual
implementation. Well-considered structuring and
writing and a large share of auto-generation is needed in
order to obtain high-quality documents. Maintaining
significant parts of the documentation as close to the
actual implementation as possible and generating

figures and tables directly from the implementation
code supports this process.

 3.2. Software Elements

A number of software building blocks, elements and
patterns are very common to any satellite control
software. What follows is a non-comprehensive list of
such elements.
Component-based software design is state-of-the-art
and eases the test, validation and reuse of the software
because components are self contained with well-
defined interfaces. Recent initiatives including the
OSRA and SOIS are all based on components.
Components comprise attributes and define functional
behavior that may be exposed and provided to other
components and/or ground.
Functionality commonly is described as a sequence of
actions. Such sequences can be invoked internally from
the software as well as via telecommand from ground.
In general, sequences depend on functionality spread all
over the software and multiple independent or inter-
related sequences may be executed concurrently.
Actions (especially when accessing hardware) may be
subject to hard real-time constraints or may require
synchronization with external stimuli.
Periodic (e.g. autonomous functions and checks) and
aperiodic functionality (e.g. telecommands and other
external stimuli) needs to be executed. Typically the
software comprises a base frequency and a number of
derived frequencies for execution of distinct and real-
time sensitive repetitive functionality. Additionally,
non-timing critical and sporadic functionality is
executed concurrently. The task design and the
scheduling scheme and algorithm is strictly designed
according to the requirements of the timing critical
actions and functions.
Commandability and observability of the satellite is
achieved through a satellite-to-ground interface for
telecommanding and telemetry. It is typically based on
the PUS [8] but proprietary protocols or (in the future)
CCSDS MO [9] are alternative options. Much
information, such as the types and numbers of the
arguments, describing telemetry and telecommanding is
required onboard as well as on-ground.
It has been shown to be advantageous to define modes
of operation for the entire satellite control software as
well as for its constituent components. A mode in this
sense is a special component attribute used to affect the
components behavior in a consistent and common way.
For example telecommands may only be executed in
certain modes or periodic activities are always activated
in selected modes.
Last but not least a well elaborated failure detection,
isolation and recovery (FDIR) concept must be realized
supporting redundancy schemes as required to achieve
the needed overall reliability. Incorporating such a
concept right from the beginning, when thinking about
the software architecture, is necessary but rarely done.

 4. DOMAIN SPECIFIC LANGUAGES

The emerging technology of Domain Specific
Languages (DSL) and their development environments,
so called language workbenches, has great potential to
mitigate many of the listed inefficiencies and effectively
fulfill the essential needs outlined above. The essential
idea is to concentrate on the specific needs of a
particular domain and provide efficient means for
expressing the solution of a problem in a language (or
more generally: by some distinct notation) known to the
domains professionals. Aspects of the implementation
that are self-evident or repetitive (in that specific
domain) are abstracted away. In practice the user (e.g.
the implementer) does not need to keep them in mind
and is able to focus on the essential objectives. The
high-level and domain specific abstract description of
the software objectives is automatically transformed
into various concrete representations including
implementation code, documentation or input for
analyses tools. Essentially the implementation is a
model comprising everything.
The idea behind this approach is fully in line with
statements by F.P. Brooks in his paper "No Silver Bullet
– Essence and Accidents of Software Engineering" [5].
The idea of introducing a compiler for writing computer
programs in a human-readable language rather than in a
series of '0's and '1's is merely taken to a level where
even more accidental complexity is removed from the
manual work share. This is achieved by shifting more
knowledge about the applications domain (which is how
to operate a satellite) into the language semantics.
Also the idea addresses the findings and proposals of
the NASA Study on Flight Software Complexity [10].
Once a DSL has been developed for the specific domain
of satellite control software, the gap between
specification and implementation in our projects is
narrowed significantly. Fig. 1 illustrates the great
advantages of this increase in abstraction.
Basically, the software implementation focuses on the
essential functionality rather than on the details of
realization. A well-designed DSL allows describing
what the software shall do without the possibility to

introduce ambiguities. A subsequent transformation
process generates C code (in the case of satellite control
software) that is compiled to the executable using the
established tool-chain.

 5. MPS AND MBEDDR

Jetbrains' Meta Programming System (MPS) [1] is a
language workbench [13] (DSL Development
Environment) that is open source and freely available. It
applies projectional editing. This overcomes the limits
of language parsers and allows editors to include tables,
mathematical symbols and graphical diagrams. The user
directly modifies the abstract syntax tree (AST),
respectively the implementation model, which is
projected onto the screen, see Fig. 2.

Different visualizations can be selected, depending on
the current needs, all representing (parts of) the same
model. Since a parser is not engaged, languages are
composable by construction and can be arbitrarily
mixed in an implementation.

Figure 1: Pyramid of Abstraction

Figure 2: Projectional Editor

Languages in MPS consist of an abstract syntax (the
structure), a type system, a set of constraint rules,
(multiple) editors and model-to-model as well as model-
to-text transformations, compare Fig.3. As the MPS
framework is open for extension, it can be easily
augmented to interface with various external tools. For
example, analysis tools are directly integrated and their
results are reported in the editor. The AST is the
implementation model which is transformed via a
number of (model-to-model) transformation steps into a
textual representation. In the case of satellite control
software this could be C code for further processing by
the compiler. During the transformation process
available MPS languages can be used and the entire
model is available for queries for efficient
transformation results.
The mbeddr project [2] is based on MPS. It provides a
language in MPS that looks exactly like the C language,
has the same semantics and transforms into C code for
the compiler to process. The advantage of having the C
language available as an MPS language (called
mbeddrC) is that it is now possible to extend the
language with domain-specific abstractions, while at the
same time being able to write low-level C code when
necessary. A number of such extensions including finite
state machines, documentation, requirements tracing,
model-checking, visualizations etc. have been
developed as part of the mbeddr project. The mbeddr
stack of extensions is shown in Fig. 7. mbeddr is

available as open source software, professionally
maintained by Itemis AG [6] and has been successfully
applied within commercial projects as reported in [4].

 6. A PROTOTYPICAL IMPLEMENTATION

Based on the technology provided by MPS and mbeddr,
a set of DSLs is currently being developed by OHB in
the scope of R&D activities. The DSLs capture and
efficiently implement the crucial elements of satellite
control software. Redundant and repeatedly applied
aspects are captured in higher level abstractions (first-
class DSL constructs). The DSLs are modular in terms
of the addressed concerns. This, together with a fully
integrated development environment providing state-of-
the-art user guidance and team development support,
results in a highly efficient approach to software
development.
The DSL design is mainly influenced by heritage from
earlier projects carried out at OHB (Small Geo Platform
and Galileo), the ESA SAVOIR initiative OSRA [7] and
the ECSS Packet Utilization Standard (PUS) [8].
Programs written in the DSLs are compliant to the
ECSS standards and quality requirements.
According to the list of software elements as presented
in section 3.2 the mbeddrC language is extended with
higher level concepts. Appropriate structure, editor
rules, type system and constraints are defined. Finally,
transformation rules are defined for generating C code
and documentation.

Figure 3: Language Definition

Figure 4: mbeddr Stack of Extensions

Figure 6: Thermal Control Component

Figure 5: Temperature Acquisition Component

1

3

2

4

5

7

9

10

11

12

14

15

6

8

14

13

13

15

17

18

19

16

Components as basic structural element and their
instances are first-order constructs. Besides other
elements the components contain attributes, mode-
charts and activities. Fig.5 and 6 show screenshots of an
implementation based on DSLs extending the C
language. Everything that does not look like C belongs
to a language extension. The used elements are briefly
described in the following.
Fig.5 depicted the implementation of component
TemperatureAcquisition and two instances
of this component . The component is assigned a
mnemonic (TACQ) that is reused and augmented with a
mnemonic tail (A and B) by the instances. The resulting
component instances' mnemonics (TACQA and TACQB)
are derived and projected into the editor. For addressing
purposes unique numeric Ids (350 and 351) are
provided with the instances. The component
implementation comprises mandatory (short and
regular) description fields which are required for the
generated documents. The component is assigned to the
EPL.PDF (Platform Devices) layer which is
one of several predefined layers and has the same intent
as that defined in the OSRA . The layer technically
(enforced by the editor) restricts access to other layers'
component instances.
Furthermore the component defines three attributes ,
by convention (and technically enforced by the editor)
they are all capital letters. They act as variables local to
the component instance which may be configured to be
accessible by ground via a dedicated Service. For this
purpose, attributes are marked either 'hidden', 'readonly'
or 'readwrite' and – if not hidden – are assigned a
numerical Id for identification via the space-to-ground
protocol. Note that the entire data pool maintaining the
attribute values and their access by other components
and via telecommands from ground (PUS 3 and PUS 20
services) is not mentioned here. It is abstracted from the
DSL-level implementation and generated during model-
to-model transformations. Thus, the implementation
only focuses on the essential concern, which is the
provision of an attribute. Like a regular C variable
declaration an attribute is assigned a data type and may
be initialized. The editor requires the implementer to
add documentation. An attribute can be initialized
differently for each component instance. In the example
the attribute SENSOR (which is of enum type
tempSensor) is initialized differently for both
instances. Together with the instance's mnemonic the
attributes are uniquely addressed in a hierarchical way
using a dot expression syntax . In the example the
attribute AVTEMP from instance PUS150 is accessed
(see Fig. 6 for its definition).
The yellow annotation /rawTemp/ to the datatype
of the array is part of a language extension that allows
associating a physical unit to the values carried in this
variable. Here the value represents a raw value read
from the thermal sensor. In Fig. 6 attributes are
associated with centigrade .
The ModeChart statement implements a simple
kind of state-chart efficiently capturing the idea that
every component may reside in an operational mode.
This mode is changed by dedicated statements invoked

in the activities . The ModeChart in Fig.5 defines two
modes (OFF and ON) and a trigger. Mode OFF does not
define any behavior, but mode ON has an entry action
and an action that is associated with the trigger
tcsAcquisition. When entering this mode the
(hidden) attribute ACQCNT is initialized. When the
trigger is invoked (by a periodical task/thread not shown
here) a temperature value is read from the sensor and an
average of the last 10 measurements is calculated.
While invoking a function for reading the temperature
value, calculating the index and accessing the array for
storing 10 values is regular C code the calculation of the
average temperature uses an extension that provides
mathematical symbols . This extension allows

to be an expression that is transformed into a respective
loop for doing the calculation. Projectional editing
allows the mathematical symbol to be made visible in
the editor. The mathematical formula is wrapped with a
convert[… → °C] statement. This is part of the
language extension that provides physical units as used
at . It converts the value from rawTemp to °C as
defined for example in the following sketched
conversion rule:

If expressions are assigned to variables with a non-
matching physical unit the typing rules of the language
extension report the error in the editor directly at
implementation time.
Functionality is implemented by ActivityS inside a
component. The activities shown in Fig.5 are rather
simple and their representation in the editor is folded for
brevity .
Fig.5 shows a simplified component for acquisition of
temperature values and calculating an average. Two
instances of this component are realized. The
component shown in Fig. 6 uses these instances, it
realizes a very simple thermal control system that is
able to use either one of the component instances for
acquisition.
The component ThermalControlSystem as shown
in Fig. 6 implements a service according to the PUS
standard. The component statement is marked
accordingly and is provided with a PUS type (150). In
order to make this more visible in the editor, the
background is colored yellow. Services are only
instantiated once and their mnemonic is PUSxxx
where xxx is the assigned PUS type . The
component is assigned to the AL (Application
Layer) and as such is allowed to access the
TemperatureAcquisition instances assigned to
the Platform Devices Layer .
The ThermalControlSystem component defines a
ModeChart. It is visualized in Fig. 7. The visualization
is generated directly from the implementation by

1

2

1

3

4

5

7

7

6

6

8

9

10

316

invoking an external tool from within the IDE. It – by
nature – is always consistent with the implementation,
such that code review actually can be carried out using
the printed documentation.

Figure 7: ModeChart

In mode OFF the control is inactive. In mode ON it
reacts on the trigger tcsControl, which is
periodically invoked in the context of a periodic
task/thread. In this trigger action the commanding for
the heater lines is determined by comparison of the
average temperature PUS150.AVTEMP with the
thresholds PUS150.LOTH and PUS150.UPTH. The
comparison and the resulting heater command is
realized using a language extension that provides a
decision table . Depending on the boolean
expressions on the rows and columns a value is selected
and returned. The shown example is a very small
decision table. The mentioned component attributes
are associated with the physical unit °C ensuring that
the check is carried out on comparable values.
The ThermalControlSystem service defines two
activities that define functionality . Each activity is
assigned a numerical id, name and description fields. As
there is only a single instance of this component
(service) its activities can be marked a telecommand.
The telecommands PUS compliant type identifier is
derived from the services numerical id by definition and
the subtype identifier is the activities
numeric id .
An activity may be constrained by a set of
boolean expressions , only if all of them
evaluate to true when invoked, the activity
is actually executed. If an invoked activity
does not fulfill a constraint a failure code
is returned instead. The failure code is
unique and derived from the numerical ids
assigned to the component instance and
the activity according to the structure of
the software. In the example the mode of
the ModeChart TCSCONTR is required to
be OFF or ON, respectively. An activity
can define input and output parameters ,
telecommands are restricted to input

parameter due to limitations of the PUS. Such parameter
are typed and mandate a description field. In-parameters
may define a constraint, for validity checking. The in-
parameter constraint is a boolean expression and acts
similarly to the activities' constraint. In the example
activity shown, TC(150,1)enableTcs is only
executed with the components mode being OFF and the
passed in-parameter upperThreshold is larger than
the passed in-parameter lowerThreshold.

The invocation of activities is according to the MO
MAL interaction pattern [9]. Based on an execution
framework middleware, the activities are invoked
asynchronously. The adaptation to the middleware is
generated as part of the transformation process.
Depending on the middleware the software is expected
to be operated with, different sets of transformation
rules may be applied. The implementation itself is
designed independently of the middleware. In Fig. 6 the
activity enableTcs uses the REQUEST pattern to
invoke the startAcquisition activity of the
addressed TemperatureAcquisition component
instance . The REQUEST pattern allows in- and out-
parameters to be transmitted and the respective
statement may specify a block of code that is to be
executed if a failure indication is returned. The control
flow requires the invoked activity to complete execution
prior to the invoking activity to continue. In contrast,
the SEND pattern asynchronously invokes an activity
and does not wait for any acknowledge. Fig. 8 shows a
sequence diagram visualizing the telecommands
implementation. Again, this picture is generated from
the implementation using an external tool from within
the IDE.
The telecommand (TC) Dispatcher is not shown in the
code. It is aware of all telecommands defined in the
software by querying the implementation. Via model
transformation the needed telecommand dispatching
harness is generated, enabling invocation of the activity
via TC packets received.
The activity delays enabling of the thermal control by
10 seconds using the DELAY statement , which
transforms into respective delay functionality provided
by the framework. The last statement of the
telecommand shown in Fig. 6 is the TELEMETRY
statement . It defines a telemetry packet (again,

11

12

14

13

15

15

17

18

19

Figure 8: Sequence Diagram

according to PUS) by specifying a mandatory
description, a subtype (the type is inherited from the
embracing service) and a list of typed parameters. Only
this statement defines the telemetry packet, other
occurrences merely refer to it. During code generation
this statement is transformed into an activity invocation
according to the SEND pattern. The activity responsible
for preparing and transmitting a telemetry packet is
invoked as shown in the sequence diagram in Fig. 8.
The corresponding arrow in the figure is annotated with
“queue=10”. This indicates that the activity provides a
queue, allowing different parts of the software to invoke
the activity and respective invocations being queued.
Again, the concrete realization of the queue is not part
of the implementation, it is part of the transformation
rules defined in the DSL statement with respect to a
selected middleware.
From the implementation not only executable code is
generated. As briefly summarized in Fig. 9, other
aspects are covered also. A dedicated DSL allows
efficient requirement tracing, state-of-the-art software
revisioning enables efficient team collaboration and
issue tracking. The implementation serves as source for
documentation generation and the configuration of the
(ground-) operator software system. Dedicated DSLs
are developed for the inclusion of unit tests and
analyses. While mbeddr already provides means to
show formal properties of certain state machines and
decision tables, we are currently working on a DSL
linking the implementation with static worst case
execution time (WCET) and schedulability analysis.

Figure 9: Linked and Generated Aspects

As the implementation contains the entire design
information and arbitrary queries can be executed, it is
feasible to simplify the data dependencies and as a
consequence the overall workflow. Circular and overly
complex process-related dependencies with respect to
the Satellite-to-Ground ICD and the Satellite Database
as described in section 2.2 are simplified.

 7. SUMMARY AND OUTLOOK

A significant increase in development efficiency and
quality is achievable when the focus of work
concentrates on essential aspects and recurring efforts
are abstracted.
In recent years the technology of domain specific
languages and language workbenches has reached a
level of maturity that allows its application in the field
of embedded, real-time, mission-critical flight software

of spacecraft. In addition to what is accomplished by
libraries, language extensions provide custom syntax
and type systems as well as the possibility to introduce
static error checking. Context sensitive model-to-code
transformation allows for optimized code generation
resulting in run-time and memory efficient code.
Compared to other concepts the approach is non-
disruptive as it builds upon the C language and
experienced developers feel comfortable. Established
tools and analyses can be introduced smoothly. The
projectional editing and introduction of higher level
abstractions cause the concepts of modeling and
implementing to become somewhat blurred, taking
advantages from both.
The work carried out and prototype developed has
shown that the approach and the tooling is very
promising. It bears great potential for improving current
workflows. Up to the present and while significant
elements and aspects of satellite control software have
not been tackled, the full advantage has not been drawn
from the approach. Nevertheless, the DSL based
approach of embedded software development has been
reported very successful in a commercial environment
[4]. It is expected to achieve improvement results of
similar magnitude and quality.
The next step in evaluation is to cover the entire life-
cycle (requirements engineering, architecture design,
implementation, validation and operation) and all major
functional aspects of in an exemplary satellite control
software implementation.

ACKNOWLEDGMENTS

This work is based on the technology provided by
Jetbrains MPS [1] and the mbeddr project [2]. It has
been carried out in the scope of the ARTES 11
Subelement 3 project under ESA contract number
20619/2007/F/W.

REFERENCES
[1] Jetbrains MPS, www.jetbrains.com/MPS
[2] The mbeddr project, www. mbeddr . com
[3] M. Völter, DSL Engineering, www. dslbook.or g ,

2013.
[4] M. Völter et.al., Using C Language Extensions for
 Developing Embedded Software: A Case Study,
OOPSA2015
[5] F.P.Brooks, No Silver Bullet – Essence and
Accidents of Software Engineering, Proceedings of the
IFIP Tenth World Computing Conference, 1986
[6] Itemis AG, www.itemis.de
[7] SAVOIR-FAIR–OSRA, Onboard Software
Reference Architecture, TEC- SWE/09-289/AJ
[8] ECSS-E-70-41C, Packet Utilization Standard, 2014
[9] CCSDS 521.0-B-2, Mission Operations– MAL, 2015
[10] D.L.Dvorak et al., NASA Study on Flight Software
Complexity, Final Report, March 2009
[11] MISRA, www.misra-c.com
[12] CCSDS 850.0-G-2, Spacecraft Onboard Interface
Services, December 2013
[13] Language Workbench Challenge,
www.languageworkbenches.net

http://www.languageworkbenches.net/
http://www.misra-c.com/
http://www.itemis.de/
http://www.dslbook.org/
http://www.dslbook.org/
http://www.dslbook.org/
http://www.mbeddr.com/
http://www.mbeddr.com/
http://www.mbeddr.com/
http://www.mbeddr.com/
http://www.jetbrains.com/MPS

