
Automated Domain-Specific C Verification with mbeddr

Zaur Molotnikov
Fortiss Institute

Guerickestraße 25
Munich, Germany

molotnikov@fortiss.org

Markus Völter
independent/itemis
Oetztaler Straße 38
Stuttgart, Germany
voelter@acm.org

Daniel Ratiu
Fortiss Institute

Guerickestraße 25
Munich, Germany

ratiu@fortiss.org

ABSTRACT
When verifying C code, two major problems must be ad-
dressed. One is the specification of the verified systems
properties, the other one is the construction of the verifi-
cation environment. Neither C itself, nor existing C verifi-
cation tools, offer the means to efficiently specify application
domain-level properties and environments for verification.
These two shortcomings hamper the usability of C verifica-
tion, and limit its adoption in practice. In this paper we
introduce an approach that addresses both problems and re-
sults in user-friendly and practically usable C verification.
The novelty of the approach is the combination of domain-
specific language engineering and C verification. We apply
the approach in the domain of state-based software, using
mbeddr and CBMC. We validate the implementation with an
example from the Pacemaker Challenge, developing a func-
tionally verified, lightweight, and deployable cardiac pulse
generator. The approach itself is domain-independent.

1. INTRODUCTION
The C programming language is used in many different ap-
plication domains. On the one hand, engineers benefit from
its flexibility and the lightweight execution environment. On
the other hand, the low abstraction level of C makes C code
hard to verify against requirements specified in application
domain terminology. With existing C verification tools, the
verification has to be performed at the abstraction level of C
itself, which is tedious and error-prone. An example of an ap-
plication domain-level requirement that must be fulfilled by
software is given below (it applies to the cardiac pacemaker
used as an example throughout this paper):

The pacer is configured with two timeout parameters, VRP and
LRI. LRI varies between 500 and 1.500 in increments of 20, and
VRP is at most 20% of LRI. In a given period of time (the tick), the
pacer either senses a signal representing a natural heartbeat, or it
does not. Before the VRP timeout such signals are to be ignored,
after VRP they must be registered. If within the LRI timeout no
heartbeat was registered, an artificial pacing must be performed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’14 Västerås, Sweden
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Requirements such as this one describe the properties the
system should have. To make them verifiable by tools, they
have to be expressed as formal verification conditions. A
(not necessarily correct) implementation of this pacing logic
is given in Listing 1. This code could be verified using C verifi-
cation tools such as CBMC [10], SATABS [11] or CPAchecker [7].
Working at the abstraction level of C, they can be used to, for
example, check assertions or error-label reachability. This
makes it impractical to directly represent the application
domain-level semantics implied by requirements such as those
described above [13, 30].

int t = 0;
bool makePace(Event e) {
switch(e) { case Sense:

case Tick: if (t < VRP) {
if (t < LRI) { return false;

++t; } else {
return false; t = 0;

} else { return false;
t = 0; }
return true; }

} }

Listing 1: Sample pacing logic implementation in C

Another problem of verification on the level of the imple-
mentation language is the lack of language abstractions for
specifying environments [35, 14]. The environment is the
code (or more generally, a system) with which the system
under verification (SUV) interacts; in particular the environ-
ment may represent the relevant aspects of the real world in
which the SUV is designed to operate. The environment must
be modeled as well. This model encodes assumptions under
which the verification is performed. Such environments are
usually nondeterministic (e.g., the heart may or may not beat
at any given time) and constrained (i.e., the behavior is some-
how bounded, usually as a consequence of characteristics of
the real world; for example, there are physical limits as to
how fast a human heart can beat). A well-defined environ-
ment can reduce the number of spurious counterexamples,
and speed up the verification as a consequence of state space
reduction [14]. Finally, assuming the verification conditions
and the environment have been specified, the question re-
mains of how to integrate them with the SUV to perform the
verification. In other words, verification schemas must be
specified. A verification schema can serve as a reusable, au-
tomated verification method that can be used with multiple
different SUVs, verification

Listing 2 shows the system from Listing 1, implemented
and verified using domain-specific C extensions. These exten-
sions are developed with mbeddr, an extensible version of C

introduced in Section 2.2. The SUV is expressed as a state
machine, which adds additional structure and domain-level
semantics to the C code, while still containing C expressions
and statements to cover the details. mbeddr’s state machines
have states as well as internal variables, jointly representing
the total state of the state machine. The environment Heart is
explicitly specified and contains nondeterministic code that
interacts with the SUV. The SUV parameters lri and vrp are
nondeterministically assigned and constrained, as specified
in the requirements.

An inductive proof schema is used to verify whether a
given SUV satisfies a set of verification conditions, starting
from the initial set of total states I. The verification condition
is specified using an after/before/exists temporal pattern,
which is much closer to the original prose requirement (to
pace at LRI) than the low-level encoding in C.

state machine Pacer {
in Tick; state Init {
in Sense; on Tick->Wait {c=0;}
in Config(lri, vrp); on Config->Init {
out MkPace; LRI = lri;
int c, LRI, VRP; VRP = vrp;
state Wait { }
on Sense[c<VRP]->Wait }
on Tick[c>=LRI]->Pace state Pace {
on Tick[c<LRI]->Wait{++c;} entry {send MkPace;}
on Sense[c>=VRP]->Wait { on Tick->Wait {c=0;}

c=0; } }
} }

environment Heart { nondet smTrigger(Pacer, Sense); }

assign lri: 500 <= lri <= 1500 && lri % 20 == 0;
assign vrp: 0 <= vrp <= 0.2 * vrp;

total state set I for Pacer: smInState(Wait)
&& c == 0 && LRI == lri && VRP == vrp;

inductive for Pacer on Tick
from: I
environment: Heart
conditions: after smIsInState(Wait)

before smIsInState(Pace)
exists c == LRI;

Listing 2: Sample pacing logic in mbeddr

We call the approach to use domain-specific extensions of C,
tailored to verification purposes, domain-specific C verifica-
tion (DSCV). Translation to verifiable C is used to perform the
verification itself. Figure 1 compares our approach to the state
of the practice in C verification tools such as CBMC. Today, a
practicing developer has to manually bridge the abstraction
gap between the application domain and the implementa-
tion by manually encoding the system and the to-be-verified
properties in C (with the exception of some property-specific
tools, see Section 6). He also has to interpret the low-level
verification results in the context of the application domain.
DSCV, in contrast, provides language extensions for these
tasks. The SUV is encoded as a domain-specific model1, and
the verification conditions as well as the environment are
expressed relative to the abstractions in the model. How-
ever, since the model is implemented using C extensions (and
not with a separate modeling language), the full expressive-
ness of C remains available to the developer when needed.
The verification results, obtained from the C-level verifica-
tion tool, are lifted to the abstractions relevant to application
1In this paper, the term model always refers to the SUV ex-
pressed with application domain abstractions.

Figure 1: Todays C verification in practice (left) vs. DSCV

domain, closing the cycle. DSCV requires the following steps
to obtain a verification tool tailored to specific application
domain:

1. Create language extensions to model the system

2. Create extensions for verification conditions

3. Create extensions for the verification environment

4. Create a verification schema

5. Implement the interaction with the verifier

The use of language workbenches (discussed in Section 2.1)
makes it straightforward to develop extensions for program-
ming languages to support verification. Once built, the ver-
ification extensions can be reused to support verification of
similar systems. New verification extensions can be built
for fundamentally different systems in a modular way, i.e.,
without invasively modifying C or existing extensions.

Contribution This paper makes three contributions:

• The DSCV approach that simplifies verification of pro-
grams by using domain-specific language extensions. It
combines existing C verification approaches with lan-
guage engineering techniques

• An instantiation of DSCV for state-based software in C,
relying on the CBMC verification tool and the extensible
version of C provided by mbeddr

• A validation of DSCV based on the implementation and
verification of a cardiac pacemaker pulse generator

From a user’s perspective, the benefit of DSCV is that the
expression, validation and maintenance of the SUV, the ver-
ification conditions and the environment is simplified due to
closer alignment with the application domain. Verification
schemas, support automated and reusable domain-specific
verification methods. From the perspective of the verifi-
cation developer, our approach enables modular, domain-
specific verification in which new constructs for modeling
SUVs, environments, verification conditions and for verifica-
tion schemas can be added in a modular way. DSCV lever-
ages the advances in C-level verification tools and brings
them closer to the end-users through language engineering.

Previous Work This work builds on our previous research
on using language engineering techniques for improving the
usability of C-level verification [32, 31]. This paper advances

our research by introducing an end-to-end verification ap-
proach that combines high-level properties, advanced envi-
ronments, and verification schemas to accomplish the com-
plete verification of an executable and deployable subsystem.

Structure To implement DSCV we rely on a number of tech-
nologies, described in Section 2. Our implementation is based
on the JetBrains MPS language workbench. It provides state-
of-the-art language engineering facilities and is discussed in
Section 2.1. To supply a version of C that can be easily ex-
tended towards verification we use mbeddr. A brief overview
over mbeddr is provided in Section 2.2. We introduce CBMC
and the connection between mbeddr and CBMC-based veri-
fication in Section 2.3. In Section 3 we describe how we have
implemented DSCV for the domain of state-based software.
This section is organized along the five steps required for im-
plementing DSCV mentioned above. In Section 4 we discuss
our DSCV-based contribution to the Pacemaker Challenge.
Section 5 contains a discussion of the resulting verification
tool and compares DSCV to other verification approaches.
Section 6 discusses related work in the verification domain.
We conclude the paper with a summary and a short outlook
on our future work in Section 7.

Reproducing the Results Our work and results are repro-
ducible because all components are open-source software.
MPS can be downloaded from JetBrains.2 The mbeddr source
code can be obtained from the public Github repository.3 The
pacemaker example code is a part of mbeddr, it is in the
code/applications/Pacemaker folder in the mbeddr sources.
CBMC can be obtained from the CBMC website.4 We also
provide an installer5 that ties all the components together,
installing MPS, CBMC and building mbeddr from sources.

2. TECHNOLOGICAL BASELINE

2.1 Language Engineering with MPS
Our work relies on language engineering [37], which refers to
defining, extending and composing programming languages
and their integrated development environments (IDEs). Lan-
guage workbenches [18] are tools that support efficient lan-
guage engineering. Our implementation relies on the Jet-
Brains MPS language workbench, which, unlike most other
language workbenches [17], uses projectional editing.

Projectional Editing The conventional approach for lan-
guage implementation relies on defining a grammar and then
deriving a parser, which recognizes structure in the program
text and materializes it into an abstract syntax tree (AST). An
IDE is essentially a text editor which runs the parser incre-
mentally to maintain the AST. The IDE also provides services
such as syntax highlighting, navigation or code completion,
and directly integrates the type checker and a compiler, if any.
Many of these services rely on the AST. As discussed in [23],
most grammar-based language engineering approaches and
tools are limited in terms of modular extensibility or com-
posability of grammars, because, depending on the grammar
class, grammars are not closed under composition. While [23]
also points out that purely declarative syntax definitions can

2http://jetbrains.com/mps
3http://github.com/mbeddr/mbeddr.core
4http://www.cprover.org/cbmc/
5http://mbeddr.fortiss.org/download/

Figure 2: A fragment of language structure definition

address this challenge to a degree, there are still important
cases where composability remains limited.

Projectional editing is a different approach to defining, ex-
tending and composing languages and IDEs. A projectional
editor does not rely on a parser. Instead, as a user edits a
program, the AST is modified directly. Projection rules create
a representation of the AST with which the user interacts,
and which reflects the resulting changes (Figure 3 steps 1 and
2). As the user edits the program, program nodes are created
as instances of language concepts. Concepts are the kinds of
AST nodes, similar to metaclasses in traditional modeling ap-
proaches. In the editor, a code completion menu lets users
create instances based on a text string entered in the editor
called the alias. The valid aliases (and thus the concepts
available for instantiation) are determined by the language
definition. Importantly, every next alias must be recognized as
it is entered, so there is never any parsing of a structured text
sequence. In contrast to parser-based systems, where dis-
ambiguation is performed by the parser after a (potentially)
complete program has been entered, in projectional editing,
disambiguation happens at the time when the user picks a
concept from the code completion menu: if two concepts
define the same alias, the user resolves the ambiguity.

In a projectional editor every program node has a unique
identifier and also points to its defining concept. So once a
node is created, there is never any ambiguity what it repre-
sents, irrespective of its syntax. References between program
elements are represented as references to the identifier. These
references are also established during program editing by di-
rectly selecting reference targets from the code completion
menu. This is in contrast to parser-based systems, where a
reference is expressed as a string in the source text and a sep-
arate name resolution phase resolves the target AST element.

Defining and Extending a Language Projectional editing
makes it simple to define languages and IDEs, or extend them with
new constructs. Implementing a new language starts with the
language structure, defining language concepts and the rela-
tionships between them. Figure 2A shows the example of an
IfStmt that consists of a list of statements in its body and an
Expression as the condition. Figure 2B shows that the if
statement and the for statement concepts both inherit from
Stmt. Similar to an object-oriented framework, MPS sup-
ports polymorphism, but it does so for language concepts.
Consequently, IfStmt and ForStmt can be used in program
locations where a Stmt is expected, for example, in the body of
an IfStmt. In addition to concepts and their relationships, a
language definition contains scoping rules, a type system and
further structural constraints (not discussed here; see [36]).

Each language concept also has projection rules to define
its representation in the editor. The notation can be textual,
tabular, symbolic or graphical; mixing these notations is also
possible, and a single concept can have several independently
defined editors so that the notation of a program can be cho-
sen by the user. In this paper we use mostly textual notations,

Figure 3: Projectional editing and code generation

because these are natural for C code. The textual notation of
an AST in MPS should not be confused with real textual edit-
ing, however: it still uses the projectional approach. Exam-
ples of other notations used in mbeddr can be found in [38].
The particular details of defining projection rules are beyond
the scope of this paper and are described in [37].

It is possible to extend languages without invasively chang-
ing their definition. An extending language defines new
concepts and their relationship to existing concepts of the
extended language, as in Figure 2. Consider extending C
with an unless statement: we create a new language that
contains an UnlessStmt concept that has a condition and a
body as children, similar to the IfStmt, in Figure 2A. Next
we make UnlessStmt inherit from the existing Stmt concept.
We then define a projection rule that renders UnlessStmt as
unless (cond) {body }. A typing rule ensures that the con-
dition is Boolean. Since language definition in MPS always
implies IDE definition, the unless statement will benefit from
the same IDE services as the base language – the extensions
integrate seamlessly. A systematic exploration of language
extension and composition with MPS can be found in [36].

Generation and Transformation MPS languages are usu-
ally generated to real text at some point so they can be passed
to existing compilers or verification tools. For this purpose,
the definition of a base language such as C contains a text
generator (Figure 3, step 3). For extensions, such as the
UnlessStmt, no text generator is necessary because exten-
sions are reduced to a semantically equivalent C representa-
tion before text generation is performed. Such transforma-
tions are defined between ASTs where nodes can be replaced
with other nodes, additional nodes can be created and nodes
can be removed. The unless (cond) {body } statement is
reduced to if (!cond) {body }.

The set of transformations can form a cascade, which in-
crementally transform extensions into C, then into C header
and implementation file modules, and finally into text files.
The existing mbeddr generators deal with many details of tex-
tual C. For example, headers are automatically generated and
name collisions are avoided by a name mangling mechanism.
Since extensions are transformed to mbeddr C, extension de-
velopers do not have to care about these details. For details
about defining transformations please refer to [37].

2.2 mbeddr
mbeddr is an open source project for embedded software de-
velopment based on incremental, modular, domain-specific
extension of C using language engineering technologies. Fig-
ure 4 shows an overview, details can be found in [38] and [39].

mbeddr and MPS mbeddr builds on MPS’ language engi-
neering facilities to define an ecosystem of over 60 languages.

Figure 5: mbeddr concepts that act as extension points.

mbeddr specifically relies on language extension [36], where
extending languages depend on an existing C base language
and add additional constructs in a modular way.

mbeddr Languages As illustrated in Figure 4, mbeddr comes
with an extensible implementation of C at its core. On top of
that, mbeddr provides a library of reusable extensions useful
for developing embedded software. As a user writes a pro-
gram, he can import language extensions from the library.
The main extensions include test cases, interfaces and com-
ponents, state machines, decision tables and physical units
for types and literals. For many of these extensions mbeddr
provides an integration with verification tools (in particular,
CBMC [10]). mbeddr also supports three important aspects of
the software engineering process: requirements specification
and tracing [40], product line variability, and documentation.
We return to the requirements and tracing support when we
briefly discuss validation of verified systems in Section 4.

mbeddr Extension Points To make typical language ex-
tensions simple to build, mbeddr comes with a set of abstract
concepts and interfaces that act as extensions points: domain-
specific extensions inherit from one of these extension point
concepts (Figure 5). In the following we use state machines
to illustrate some of these extension points because state ma-
chines play an important role in the pacemaker example.
IModuleContent represents module-level abstractions (Fig-

ure 5A). For example, struct declarations and functions, as
well as mbeddr state machines inherit from IModuleContent.
All “file-level” C extensions are module contents.

The imperative behavior of C is expressed as statement
lists. If a new kind of statement is required, the Statement
concept must be used as the parent (Figure 5B). For example,
mbeddr provides the smtrigger(event) statement which
triggers a state machine with an in event. Lists of statements
can also be contained in other extensions, typically module
contents or other statements. For example, state machines
contain statement lists in entry actions of states. C expres-
sions represent values.6 New expressions can be created
by extending Expression. For example, all binary opera-
tors in mbeddr C (+, -, or *) extend Expression transitively
via BinaryExpression (Figure 5D). mbeddr supports a num-
ber of expressions related to state machines. One of them
is the smIsInState(state) Boolean expression which tests
whether a state machine is in the state passed as the argu-
ment. Expressions are used also in the verification conditions
shown in Figure 7A and Figure 7C. Finally, every expression
and variable in C has a type. Whenever the type system of C

6Even tough they are not pure because the evaluation of ex-
pressions can have side effects

Figure 4: Layered architecture of mbeddr. It is based on MPS and provides a set of modular extensions to C (the ones most
relevant for this paper are highlighted). At the back-end, it relies on established compilers and analysis tools.

has to be extended, a new type is defined that inherits from
the Type concept (Figure 5C) and a typing rule is added.

2.3 C Verifiers and Language Engineering
C verifiers such as CBMC [10], SATABS [11] or CPAchecker [7]
are powerful enough to perform verification of subsystems.
However, they are not used in practice to their full potential
due to, among other reasons, usability challenges.

C verifiers are designed to reason about properties of C
code including built-in robustness checks, user-defined as-
sertions as well as checking the reachability of error labels.
The abstraction gap between application-level properties and
C code makes it practically hard to verify application-level
properties using C verifiers (cf. the requirements specification
problem [12]). Encoding application-level properties, which
are usually directly derived from application requirements
and expressed with application domain terminology, as error
labels or assert statements is tedious and error-prone [13,
30]. An additional obstacle in the context of C verification
is the difficulty to define the boundary of a SUV, because C
lacks effective means to define module boundaries.

More generally, an environment for verification must be
specified (the problem is discussed for Java in [35]). Such en-
vironments are often nondeterministic. C verification tools
offer ways to introduce nondeterminism typically via calls to
non-defined functions, uninitialised variables or unset func-
tion parameters. assume statements can be used to constrain
nondeterminism and specify assumptions on the environ-
ment. However, just like the specification of the verification
conditions, these abstractions are code-oriented and do not
relate to the application domain. Examples of application
domain-related environment specification primitives include
ranges for parameters, a nondeterministic choice construct,
nondeterministic state machines or regular expressions to
specify event sequences. Language extension can be used to
define new, application domain-specific language concepts
for specifying verification conditions and environments.

However, these still have to be used in a way that actually
leads to a verification of the conditions, and hence proves
the SUV correct relative to the environment (or not, illus-
trated with a counterexample). A specification is required
which makes this process explicit. Problems like this one
are typical for theorem proving: how to get from a set of
explicit hypotheses to a proof of an implied conclusion? We
have explained above that, using C verifiers, it is hard to ex-
press the hypotheses (an environment) and the conclusion
(the given conditions hold). It is even harder to express a

verification procedure and argue for its correctness, since C
is not designed for such purposes. Based on the application
domain-level verification conditions and environments, ad-
ditional language extensions can be used to express verifi-
cation schemas.

Finally, tool integration must be provided that simplifies
understanding of counterexamples and enables fixing of de-
fects detected by the verification. First, the verification tool
has to be invoked and multiple invocations have to be orches-
trated, combining their results. Second, the counterexample
obtained from the C verification tool has to be presented at
the level of the application domain, enabling users to trace
the origin of a problem and perform the necessary fixes.

Summing up, we identify the following problems with
state of the art C verification: specification of the verification
conditions, the environment and the verification schema, as
well as tool integration. As indicated above, these challenges
can be resolved by defining application domain-specific C
extensions targeted towards verification, and by providing
a deep integration with C verification tools. To be able to
formulate the verification conditions and the environment
on the level of the application domain, it is also necessary
to describe the SUV itself at that level, and corresponding C
extensions have to be provided. These represent application
domain semantics directly, as opposed to hiding them behind
low-level C details. We do not see this as a disadvantage,
though, because this makes the system implementation more
maintainable, and the implementation can be validated more
easily against the requirements.

3. DOMAIN-SPECIFIC C VERIFICATION
This section describes the implementation of DSCV on top of
mbeddr for state-based software, illustrated with the pace-
maker example. The description is organized along the steps
introduced in Section 1. A detailed discussion of the pace-
maker logic itself is beyond the scope of this paper, and we
refer to the Pacemaker Challenge specification by Boston Sci-
entific [8]. Pacemakers have different pacing modes; the VVI
mode is used in this section because of its simplicity. We ver-
ify the more complex DDD pacing mode with mbeddr-based
DSCV as well; see Section 4 for details.

3.1 Modeling the System under Verification
The first step when implementing DSCV is preparing lan-
guage extensions to implement the SUV. This is necessary to
align the abstraction level of the SUV with the application
domain-level verification conditions and environment.

Figure 6: Left: An example SUV model using a state machine. Right: The translation of the state machine to C.

In many domains, requirements can be refined to finite-
state automata; the pulse generator of a cardiac pacemaker is
an example. We use mbeddr’s existing state machine exten-
sion, so we do not have to define our own language exten-
sions to model the SUV. In addition to enabling verification
conditions at the abstraction level of state machines, the state
machine also acts as the boundary of the SUV. An explicit
system boundary is important for several reasons: it allows
verification independent of the context in which the system
is used; it makes reuse in a different context easier; and most
importantly, the boundary makes explicit the SUV state space
relevant for the verification processes. The boundary can be
enforced via structural constraints and data flow checks, both
available to the language engineer in MPS.

Figure 6 shows an example state machine and its (slightly
simplified) translation to C that serves as an executable im-
plementation and as a verification target for CBMC. States
are translated to an enum, and variables represent internal
data and the current state (the total state). A state transition
function encodes the transitions. In the VVI pacing mode, the
two parameters LRI and VRP specify when a pace should take
place. They are set with the incoming config event (cf. the
textual requirement at the beginning of the paper). An outgo-
ing p event is bound to a function doPace(), which drives the
pacer hardware. The reaction to incoming events depends on
the current state, and the value of a counter c that is used in
the transition guards; these are translated to if cascades.

If verification is performed in a domain for which mbeddr
state machines fit well, they can be reused. Otherwise appli-
cation domain-specific extension (incl. their transformation
to C), have to be defined first. Section 2.1 explains how to do
this and Section 2.2 introduces the typical extension points.

3.2 Verification Conditions
The second step in applying DSCV is providing language ex-
tensions to specify verification conditions. They should be
aligned with the kinds of properties relevant for the SUV ac-
cording to the requirements. Like the modeling extensions,
the extensions for verification conditions should express ap-
plication domain semantics, as opposed to C implementation
details. The extensions have to be translated to constructs
known to the C verifier, typically assertions or error labels.

If the model is a state machine, verification conditions usu-
ally relate to event sequences and states, as expressed by
linear temporal logic (LTL) [6]. We have implemented direct
support for a subset of the well-known specification patterns
for finite-state verification introduced in [15]. These patterns
are translated to monitor code blocks in C, verified by CBMC.

Some examples of mbeddr’s temporal patterns are:

• after p until q must: expr
• before p exists: expr
• between p and q exists: expr

Figure 7A shows a pattern expressing the property that the
counter c has to become the value LRI while in the Wait
state, before the machine transitions into Pace state. In the
translation to C (on the right side of the arrow), the flag q is
used to start and stop setting the e flag, which in turn encodes
the existential quantifier from the verification condition.

To support verification of state-based software, mbeddr
provides abstractions to specify total state sets, nondetermin-
istic initialization of state machines into a specified total state
set as well as assertions on a machine state. We developed the
history extension to store and query the event history of state
machines specifically for the pacemaker. When verifying the
more complex DDD pacing mode [8], these languages are all
used together. Figure 7 shows examples.

The extensions for the verification conditions also rely on
the extension points introduced in Section 2.2. For example,
the temporal patterns inherit from Statement. They are trans-
lated into monitors and C verifier assert statements. New
expressions are provided to query for properties of the mod-
elling extensions. IModuleContent is used as the basis for the
history language concepts and total state set definitions.

3.3 Verification Environments
Implementing and verifying software that works in an ar-
bitrary environment is difficult and usually not necessary,
because most software systems only have to work in a (more
or less) well-defined environment. However, the assump-
tions and constraints implied in the environment must be
made explicit. So the third step in implementing DSCV is the
development of extensions for specifying environments.

Environments, by their nature, often exhibit nondetermin-
ism. Unfortunately, C lacks language constructs to effectively
define a nondeterministic yet constrained environment. And
as with the system modelling and the verification conditions,
the specification of the environment depends on the applica-
tion domain: for a new domain mbeddr C must be extended
with appropriate constructs.

For the pacemaker state machine, the following simple con-
structs are enough to create an overapproximation7 of the real
7Overapproximated environments can exhibit more behav-
iors than the real environment. They can be easier to express,
e.g., as an underspecifications of the real environments. Prov-

Figure 7: A: A verification condition using a temporal pattern B: A verification environment using nondeterministic choices
C: A verification schema element that uses nondeterministic initialization of a state machine.

environment’s behaviors. Figure 7B shows a nondeterminis-
tic choice construct, which either triggers an incoming event
s on the state machine, or does nothing. This reflects the
behavior of a human heart, which at any given time may pro-
duce a beat or not, nondeterministically. The nondet_choice
construct is translated to a call to an undefined function, re-
stricted by assumptions (illustrated below). A set of if state-
ments execute behaviors based on the result of the choice.

A state machine with a nondeterministic choice in the tran-
sition guard could be used to specify a nondeterministic en-
vironment, which is itself state-based. The corresponding
constructs are already available in mbeddr. Another useful
mbeddr environment specification construct is a nondeter-
ministic but constrained assignment of a variable, e.g., nondet
assign x constraint: x >= 10 . In the case of the pace-
maker, the parameters are set (nondeterministically) by the
medical doctor to a value that respects constraints defined by
the system. Such an assignment is translated to a call to an
undefined function and an assume statement. The code below
shows the translation of the nondet assign given above:

x = nondet_int(); __CPROVER_assume (x >= 10);

Like other verifiers, CBMC provides function prototypes that
can be called from user code to obtain nondeterministic data.
These functions are implemented by CBMC itself.

3.4 Verification Schemas
The ability to model the SUV and to specify its environment
and the properties does not automatically lead to a proof of
the properties: the ingredients have to be used together in a
consistent way to formulate a property proof obligation for
the underlying verifier. Traditionally this is implied in the
way the environment interacts with the SUV and the loca-
tions where the verification conditions are checked. DSCV
uses language extensions to specify the proof obligation in
an explicit and reusable way. We call this a verification schema.

The construction of the verification schema is also driven
by the application domain. For a pacemaker, we assume a
cyclic system where, in an interrupt service routine, a tick
counter is incremented, an environment state is read, the
events are triggered on the state machine accordingly, and
then the conditions are checked. This process repeats forever.
Figure 8 shows the verification schema for the pacemaker, as
well as its translation to lower level verification primitives8.

Bounded C verifiers such as CBMC can only verify a fi-
nite number of these read/trigger/check cycles. This means

ing a property P for the overapproximated environment leads
to the conclusion that P holds also for the real environment.
8This is an example of a transformation cascade. The schema
is not translated to C directly. Instead, it is translated to lower-
level verification extensions which are themselves reduced to
C by downstream transformations.

Figure 8: Left: Inductive verification schema example and
Right: Its translation

that the conditions are verified only for a limited execution
path of the system after its initialization. Additional effort is
needed to verify the properties during the unbounded exe-
cution path. The verification schema for the pacemaker uses
induction to achieve this:

1. An initial set of total states I is defined for the SUV
2. The SUV is nondeterministically initialized into I
3. In a loop, the environment interaction is performed and

the properties are asserted
4. After a number of iterations, either the verification bound

is met and the verification fails (because CBMC is a
bounded model checker), or the SUV returns into I, mean-
ing that the induction has succeeded.

If the CBMC bound was met, then one of the following steps
can be taken: either the bound has to be increased, letting
CBMC "try harder" to prove the induction. Alternatively,
I must be redefined to be more limited, shrinking the state
space the verifier must explore. Meeting the bound may also
mean that the system really is not cyclic (i.e., a problem has
been found). If the SUV returns to I, then, by induction,
the asserted properties hold along any unbounded execution
path of the SUV, given that it starts from a total state in I.

The last step in making the inductive proof valid is to show
that the precondition (that the execution starts in I) is met.
In the simplest case, the system is in I right after a regular,
deterministic initialization. Otherwise it must be proven sep-
arately that the properties hold along the execution path that
leads into I from the SUV’s initial total state, into which the
system is (deterministically) initialized during the actual ex-
ecution. In such a case the verifier may have to be invoked
more than once, and the tool integration (discussed in Sec-
tion 3.5) must take care of orchestrating these invocations.

The inductive verification schema for the pacemaker (Fig-
ure 8) resembles an inductive proof on the state machine,
as the translation on the right side of the figure shows. The
induction is performed on the tick event t. At first a state ma-
chine is initialized nondeterministically9 to a set of total states
9Figure 7C defines a total state set Initial and shows a

Figure 9: Analysis configuration in mbeddr

Initial, from which an inductive step starts, represented as
a loop. The loop body consists of triggering nondeterminis-
tically the s event, which is equivalent to a nondet_choice
from Figure 7B. Then the verification condition is asserted
(Figure 7A), and finally t is triggered again. The MAX_LRI
constant defines the maximum number of loop iterations un-
til the induction step should converge, bringing the state ma-
chine back to the Initial set of total states. This is ensured
with an assertion that checks that that the state machine is
back in the Initial set of total states at some step.

As this example demonstrates, verification schemas can be
used to step beyond the capabilities of the underlying verification
tool, proving more or stronger properties. For example, the
verification schema for the pacemaker described above over-
comes the bounded nature of CBMC.

For the end user the schema implementation is hidden and
verification is truly performed at the application domain-
level. Once created, the verification schema can be reused
with other SUVs, initial states and conditions. This reuse
leads to lower effort for the verification of similar systems,
making verification more feasible for the practitioner. In the
case of the pacemaker verification, multiple pulse generator
modes can be verified with the same verification schema.

3.5 Interfacing with the C Verifier
We have shown how application domain-specific languages
such as state machines enable us to define higher level verifi-
cation conditions, verification environments, and verification
schemas. To perform the proofs we use the external C-level
model checker CBMC. Two steps are necessary for integrat-
ing the verifier tool into mbeddr.10 First, the verifier must be
parametrized and invoked. Second, the C-level counterex-
amples produced by the verifier in the case where a property
fails, must be lifted to the abstraction level of the domain.

Invoking the Verifier The problem of invocation and con-
figuration is addressed with analysis configurations, another
language extension (Figure 9). In addition to holding CBMC-
related configuration parameters, they also identify the entry
point, a function from which the verification starts. Since
CBMC performs only relatively simple and isolated checks
(e.g., based on label reachability), the tool integration also or-
chestrates the potentially multiple invocations necessary for
verifying application domain-level properties.

To implement a new analysis configuration for CBMC, one
can inherit from the CBMCBasedAnalysisConfiguration con-
cept. A subclass of Analyser is created to orchestrate the
calls to the verification tool. This is a rather mechanical task;
however, a framework is provided to support extensibility.

Counterexample Lifting The actual verification happens
at the level of C, and the counterexample obtained from the

nondeterministic initialization of a state machine. Initial
requires the state to be Pace, but keeps the values of c, LRI,
and VRP unspecified, assuming that VRP < LRI.

10We consider here only non-interactive verifiers, which can
run in a batch mode, CBMC is one of these.

Figure 10: Lifted counterexample in mbeddr
verifier is also expressed in terms of C. To make it meaningful
to the user, it has to be lifted to the abstraction level of the
SUV expressed as a model, its environment and verification
conditions. Figure 10 illustrates how the counterexample is
shown to the user: the view contains the failed property as
well as the counterexample represented as a debug trace on
the model level. Technically, the steps are bound to the lines
of (generated) C code. As part of the lifting process, we
shorten the CBMC output considering only the data that is
relevant for showing the execution trace on the level of the
application domain extensions: typically, several execution
steps at the C-level can be lifted to a single execution step
at the domain-specific language (DSL) level. The verification
tool output is thus automatically compressed, becoming more
accessible to the user (the highlighted assignment in Figure 10
corresponds to over 25 lines of XML verifier output). Relying
on MPS, mbeddr keeps track of the mapping of the original
program nodes to the final line numbers in the textual C
representation. This enables us to bind the trace steps to the
program nodes of the SUV. The UI supports navigation from
the trace to the SUV code.

4. DSCV AND PACEMAKER CHALLENGE
Over the last years there have been many approaches to ad-
dress the Pacemaker Challenge [8] by using high-level mod-
eling languages and verification at the model level. However,
none uses C directly to implement the pulse generator. The
work in [29] demonstrates a tool chain that enables the trans-
lation of a verified UPPAAL model to Stateflow and then to
C, applying it to a Pacemaker case study. In [25] the Vienna
Development Method (VDM) is applied. In [33], the pace-
maker is modeled using PROMELA and verified using the
SPIN model checker; the corresponding C code, however, is
hand-written based on a set of guidelines. In [20] Z is used
to specify the pacemaker and to subsequently synthesize C
code via the Perfect Developer tool.11 Event-B is employed
in [26] to formally model the pulse generator, EB2C generates
C code from the Event-B model. In [24] the AADL language
with BLESS annotations is used to model and verify a pace-
maker VVI pacing mode. In all cases listed above, the generated
executable code, when obtained, is not verified. The verification
is performed only at the model level, and testing is used to
check the C code. With DSCV, while supporting application
domain-level models for the SUV, the verification conditions
and the environment, always verify the generated C code.

Deployment We used DSCV and mbeddr to implement and
verify one of the more complex pacing modes, called DDD,
verifying all the functional properties it must fulfil. We then
deployed the generated and verified code to an Arduino-
based system, performing hardware in the loop tests. These
tests revealed no faults in the implementation.

11http://www.eschertech.com/

Figure 11: Pacemaker parameters table with ranges, as
taken from the requirements document [8].

The ability to deploy the verified code shows that the code
is efficient enough to run on the intended target platform;
this is critically important for real-world use. To the best
of our knowledge, we are the only group in the Pacemaker
Challenge that has implemented a fully functionally verified,
executable, deployable, and lightweight DDD pacing logic.

Validating the System Verification, as discussed in this pa-
per, refers to the automated checking of formally specified
verification conditions relative to a system implementation
and a well-defined environment. However, in the end, a sys-
tem must be validated, not just verified. Validation ensures
that the system reflects the original requirements, typically
specified as prose. In the context of verification this means
that the verification conditions must reflect the requirements.
DSCV and mbeddr help with this aspect via application do-
main alignment and requirements tracing.

DSCV-based models, conditions and environment are eas-
ier to validate than the corresponding C code would be, be-
cause they are aligned more closely with the application do-
main. However, this can be taken further: the primitives
for specifying environments can be combined to create more
high-level environment constructs. For example, in the Pace-
maker specification [8] many parameters are described in
tables (Figure 11). Since mbeddr supports tabular notations,
it is possible to create such tables in mbeddr and transform
them into the primitives presented above. For instance, the
first row of the table can be translated to:

nondet assign LRI constraint:
(LRI >= 30 && LRI < 50 && LRI % 5 == 0)

|| (LRI >= 50 && LRI < 90)
|| (LRI >= 90 && LRI <= 175 && LRI % 5 == 0)

In addition, the physical units provided by mbeddr could be
used to enhance the type system checks.

mbeddr supports a language for requirements specifica-
tion that flexibly combines prose text and formal specifica-
tions [40]. For example, the tables mentioned in the previ-
ous paragraph can be embedded into a requirements docu-
ment. Even in this case they can be translated into verification
conditions. mbeddr also supports ubiquitous tracing. Any
program node (expressed in any language) can be traced to
requirements (specified using mbeddr or external tools such
as DOORS12). This way any modeling, verification or envi-
ronment artifact can be directly linked to the requirements,
further aiding with validation.

5. DISCUSSION
On the trustworthiness of verification results. DSCV re-
lies on extending C with specific constructs for verification,
translating them to C and running a C verifier subsequently.
The code that is generated from the SUV will subsequently be
executed on the target platform (the verification conditions

12http://ibm.com/software/products/en/ratidoor

and the environment will not be deployed, of course). As a
consequence, all C details are verified to the degree they are
addressed by the verifier. At the same time, the specification
is more concise and closer to the application domain, which
makes it easier to validate (see previous section).

However, errors in the transformation of the extensions
to C may lead to undiscovered problems and hence, bugs
in the executing code. However, the separate translation of
the model, the conditions and the environment increases the
confidence in the verification result, since, for a systematic
mistake, all three translations have to be consistently wrong.
Providing verified transformations would be the ultimate so-
lution. However, this is not feasible because neither C nor
the extensions have formally defined semantics in mbeddr.

On hiding low-level details about the verification. The ex-
tension developer has to deal with the details of the low-level
verification, since he has to develop the transformations and
the lifting of the results. However, from the perspective of
the application developer who uses existing extensions for a
given application domain, the extensions hide the low-level
details, with one exception: a developer still has to provide
the correct parameters for executing CBMC. Failing to do so
may lead to faulty verification, as a consequence of, for exam-
ple, too short path lengths. So users still have to understand
what CBMC does and how it has to be parametrized – but
specifying and maintaining the model, the conditions and the
environment is simplified. In addition, since the verification
verifies C code, the scalability issues of C-level verification
apply: depending on the structure and the size of the SUV,
the verification may suffer from state explosion.

On the efforts for building the extensions. Once the
domain-specific extensions are available for a given appli-
cation domain, expressing models, conditions and environ-
ments becomes more efficient. However, the extensions have
to be built first. Building the state machines extensions took
the mbeddr team a few weeks. Development of the exten-
sions for conditions and environments to verify state ma-
chines can be done in a few days. Both requires developers
who have experience with developing languages with MPS;
this in itself requires a few weeks to learn. Whether these
few weeks and days are feasible in a given domain must be
judged in each case separately. Like with all reusable assets,
the decision depends on how often a set of extensions are ex-
pected to be used. Considering that the pacemaker contains
many different pacing modes (implemented with different
state machines and verification conditions) we think that the
trade-off makes sense in this particular case.

On the end-user workflow. Assuming the extensions are
available, we expect developers to use verification-driven de-
velopment: the model, the conditions and the environment
are evolved iteratively, in parallel. This is similar in spirit to
test-driven development [4], and has two advantages. First,
after each iteration, the SUV, the conditions and the environ-
ment are in sync, and the trust in the SUV builds over time.
Similar to test-driven development, the repeated verification
drives the design of the SUV to be modularized in a way that
makes the verification feasible in terms of complexity and
performance (smaller modules, well-defined interfaces). In
contrast, experience tell us that it is often infeasible to verify
a system after it has been implemented fully, without consid-
eration for verification during the implementation process.

On using DSCV with other domain-specific constructs. We
have shown that state machines are a good basis for DSCV.
However, the approach is not restricted to state machines. We
are currently using DSCV for checking component contracts
(discussed in [32]) and for checking the consistency of data
flow models (as a part of a commercial tool for Siemens PL
(LMS); we cannot disclose the details here).

On applying DSCV with other languages. We have inte-
grated CBMC with mbeddr, leading to more domain-specific,
and hence more usable verification. This is made possible by
two ingredients. The first one is a verification tool (such as
CBMC) that supports label reachability analysis and assertion
checking in the target language. Reachability and assertions
are useful because they support encoding of many other ver-
ification goals in the target language. The second ingredient
is a way to efficiently define modular extensions (for mod-
els, conditions and environments) for the desired base lan-
guage (C in our case). We conjecture that the same approach
can be used for other languages if these two ingredients are
available. For example, Java Pathfinder [21] can be used to
perform reachability analysis for Java, and SugarJ [16] can be
used to extend Java (and its IDE).

6. RELATED WORK
Code-level verification and specification: In comparison to
existing ways of specifying verification conditions [3, 19, 9],
DSCV enables their expression at the level of the application
domain. Our work addresses directly the fourth challenge
from [22]: [..] to find effective ways to structure software such that
formal verification techniques [..] become simpler to use and more
effective in identifying potential violations of correctness properties
in executable code. mbeddr is extensible with new modeling
constructs, verification conditions and environments for dif-
ferent domains or modeling formalisms; they can be used
together in an integrated fashion, in the same development
environment, and together with non-verified parts of a sys-
tem. This makes DSCV and mbeddr more efficient to apply
in practice because it eliminates the overhead in using and
integrating different languages and tools. An additional ad-
vantage of DSCV is that there is no need to annotate the
implementation code with additional verification-specific in-
formation (such as loop invariants in Frama-C [3]) because
the semantics are directly implied in the extensions. This
enables the clean separation of implementation and verifi-
cation concerns and makes the verification more accessible.
In [27] C program properties are encoded using a language
that allows expressing LTL formulas with C boolean expres-
sions over global variables. From these properties a monitor
thread is generated and a model-checker is used for verifica-
tion. An algorithm drives the interleaving between the moni-
tor thread and the program to ensure that property checks are
performed at all meaningful program locations. In contrast,
DSCV requires the user to take care of interleaving monitors
correctly with the code. Despite our example, DSCV is not
restricted to LTL properties: users are encouraged to create
their own high-level property specification extensions. Thus,
the results of [27] could be exploited using DSCV by adding
new languages for properties and generating monitor threads
as in [27], and using a suitable model-checker. In [2], the low-
level C-like SLIC specification language is used to express po-
tential library misuse problems in C programs. SLIC makes
it easy to encode simple temporal patterns. C code is gen-

erated from SLIC, and verification is used to detect property
violations. Our approach differs by providing an extensible
way to build and verify programs on the application domain
abstraction level, rather than checking programs for a specific
category of bugs.

High-level specification languages: When compared to
tools for verifying models expressed in high-level specifica-
tion languages such as Z [34] or Isabelle/HOL [28], DSCV
benefits from close integration with C. First, the verified arti-
fact (the generated C program) is a strict subset of the artifact
that is deployed on the target device; some of the auxiliary
code required for verification is not deployed. This reduces
the specification and implementation effort (since it has to
be done only once) and also reduces the potential for mis-
matches between specification and implementation. Second,
in contrast to separate languages with downstream code gen-
eration, DSCV benefits from the close integration with C: low
level code can be used where necessary and no semantic and
tool integration problems arise when combining the to-be-
verified code with the rest of the system.

Existing modelling and verification tools: In comparison to
modelling and verification tools such as Scade [1], Simulink13

or UPPAAL [5], DSCV is focused on C-level verification. It
supports modular extensions of C for different application
domains, and for each extension it provides suitable verifi-
cation mechanisms including rich verification environments
and schemas. In addition, since the conditions and environ-
ments are implemented as C extensions, it is possible to use
C-code seamlessly together with the high-level extensions, as
long as the SUV boundary remains intact (see Section 3.1).

7. CONCLUSION AND FUTURE WORK
The constantly improving C verification tools are not used at
their full potential. In this paper we presented a novel ap-
proach that improves the practicality of these tools by using
language engineering. We addressed the problems of specify-
ing the verification conditions and verification environments
in a way that is aligned with the application domain and pro-
vided verification schemas to specify proof obligations. We
implemented our approach using mbeddr and CBMC in the
domain of state-based software. We validated our DSCV im-
plementation by building a functionally verified, lightweight,
deployable cardiac pulse generator.

mbeddr’s extensibility supports straightforward adapta-
tion to other domains as well as other kinds of verification
conditions, environments and schemas. DSCV can be used
with other languages as long as modular language extension
is possible and a verification tool is available for the language
that supports assertions and label reachability analysis.

Our future work will proceed along the following lines:
First, we will investigate the degree to which partial environ-
ment assumptions that are targeted towards the verification
of individual properties can be specified. Second, we will
investigate verification schemas and environments for com-
position of systems. Third, we will experiment with a ver-
ification cloud where remote verification agents execute the
verifier continuously. Finally, we will use MPS’ new support
for graphical notations to represent state machines graphi-
cally, further simplifying validation.

13http://www.mathworks.de/products/simulink

8. REFERENCES
[1] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren, and

O. Åkerlund. Designing Safe, Reliable Systems using
Scade. In Leveraging Applications of Formal Methods,
pages 115–129. Springer, 2006.

[2] T. Ball, B. Cook, V. Levin, and S. K. Rajamani. SLAM
and Static Driver Verifier: Technology Transfer of
Formal Methods inside Microsoft. In E. Boiten,
J. Derrick, and G. Smith, editors, Integrated Formal
Methods, volume 2999 of Lecture Notes in Computer
Science, pages 1–20. Springer Berlin Heidelberg, 2004.

[3] P. Baudin, J. Filliatre, C. Marche, and et al. ACSL:
ANSI/ISO C Specification Language,
http://frama-c.com/acsl.html, 2012.

[4] K. Beck. Test-driven development : by example.
Addison-Wesley, Boston, 2003.

[5] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and
W. Y. 0001. UPPAAL - a Tool Suite for Automatic
Verification of Real-Time Systems. In R. Alur, T. A.
Henzinger, and E. D. Sontag, editors, Hybrid Systems,
volume 1066 of Lecture Notes in Computer Science, pages
232–243. Springer, 1995.

[6] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and P. Schnoebelen. Systems and software
verification: model-checking techniques and tools. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[7] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for
configurable software verification. In Proceedings of the
23rd International Conference on Computer Aided
Verification (CAV 2011, Snowbird, UT, July 14-20),
LNCS 6806, pages 184–190. Springer-Verlag,
Heidelberg, 2011.

[8] S. Q. R. L. Boston Scientific. PACEMAKER System
Specification, http://sqrl.mcmaster.ca/pacemaker.htm,
2007.

[9] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll.
Beyond Assertions: Advanced Specification and
Verification with JML and ESC/Java2. In Proceedings of
the 4th International Conference on Formal Methods for
Components and Objects, FMCO’05, pages 342–363,
Berlin, Heidelberg, 2006. Springer-Verlag.

[10] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004),
volume 2988 of Lecture Notes in Computer Science, pages
168–176. Springer, 2004.

[11] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-based predicate abstraction for ANSI-C.
In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2005), volume 3440 of Lecture Notes in
Computer Science, pages 570–574. Springer Verlag, 2005.

[12] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A
Language Framework for Expressing Checkable
Properties of Dynamic Software. In K. Havelund,
J. Penix, and W. Visser, editors, 7th International SPIN
Workshop, volume 1885 of Lecture Notes in Computer
Science, pages 205–223. Springer, 2000.

[13] L. Cordeiro, B. Fischer, H. Chen, and J. Marques-Silva.
Semiformal Verification of Embedded Software in
Medical Devices Considering Stringent Hardware
Constraints. In International Conferences on Embedded
Software and Systems, ICESS, pages 396–403, 2009.

[14] P. Dhaussy, F. Boniol, J.-C. Roger, and L. Leroux.
Improving Model Checking with Context Modelling.
Advances in Software Engineering, 2012, Jan. 2012.

[15] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in property specifications for finite-state verification. In
Proceedings of the 21st International Conference on Software
Engineering, ICSE ’99, pages 411–420, New York, NY,
USA, 1999. ACM.

[16] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann.
SugarJ: Library-based Syntactic Language Extensibility.
In Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, volume 46 of OOPSLA,
pages 391–406, New York, NY, USA, Oct. 2011. ACM.

[17] S. Erdweg, T. van der Storm, M. Völter, M. Boersma,
R. Bosman, W. R. Cook, A. Gerritsen, A. Hulshout,
S. Kelly, A. Loh, et al. The State of the Art in Language
Workbenches - Conclusions from the Language
Workbench Challenge. In Software Language
Engineering, pages 197–217. Springer, 2013.

[18] M. Fowler. “Language Workbenches: The Killer-App
for Domain Specific Languages?”, 2005.

[19] A. A. E. Ghazi, M. Ulbrich, C. Gladisch, S. S.
Tyszberowicz, and M. Taghdiri. JKelloy: A Proof
Assistant for Relational Specifications of Java
Programs. In 6th NASA Formal Methods Symposium
(NFM), pages 173–187, 2014.

[20] A. O. Gomes and M. V. Oliveira. Formal Development
of a Cardiac Pacemaker: From Specification to Code. In
Proceedings of the 2Nd World Congress on Formal Methods,
FM ’09, pages 692–707, Berlin, Heidelberg, 2009.
Springer-Verlag.

[21] K. Havelund and T. Pressburger. Model Checking JAVA
Programs using JAVA PathFinder. International Journal
on Software Tools for Technology Transfer, 2(4):366–381,
2000.

[22] G. J. Holzmann, R. Joshi, and A. Groce. New challenges
in model checking. In 25 Years of Model Checking,
volume 5000 of Lecture Notes in Computer Science, pages
65–76. Springer, 2008.

[23] L. C. L. Kats, E. Visser, and G. Wachsmuth. Pure and
declarative syntax definition: paradise lost and
regained. In W. R. Cook, S. Clarke, and M. C. Rinard,
editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, pages
918–932, Reno/Tahoe, Nevada, 2010. ACM.

[24] B. Larson, P. Chalin, and J. Hatcliff. BLESS: Formal
Specification and Verification of Behaviors for
Embedded Systems with Software. In 5th International
Symposium, NASA Formal Methods, pages 276–290, 2013.

[25] H. D. Macedo, P. G. Larsen, and J. S. Fitzgerald.
Incremental Development of a Distributed Real-Time
Model of A Cardiac Pacing System using VDM. In 15th
Intl. Symp. on Formal Methods, Aabo Akademi, Finland,
pages 181–197, May 2008.

[26] D. Méry and N. K. Singh. Formal Development and
Automatic Code Generation : Cardiac Pacemaker. In
International Conference on Computers and Advanced
Technology in Education, ICCATE, Beijing, China, Dec.
2011.

[27] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer.

Context-Bounded Model Checking of LTL Properties
for ANSI-C Software. In G. Barthe, A. Pardo, and
G. Schneider, editors, In Intl. Conf. on Software
Engineering and Formal Methods, (SEFM), volume 7041
of Lecture Notes in Computer Science, pages 302–317.
Springer, 2011.

[28] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283.
Springer-Verlag, Berlin, Heidelberg, 2002.

[29] M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and
R. Mangharam. From Verification to Implementation:
A Model Translation Tool and a Pacemaker Case Study.
In M. D. Natale, editor, IEEE 18th Real-Time and
Embedded Technology and Applications Symposium, RTAS,
pages 173–184. IEEE, 2012.

[30] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf.
Linking Functional Requirements and Software
Verification. In 17th IEEE International Requirements
Engineering Conference, pages 295–302. IEEE Computer
Society, 2009.

[31] D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schätz.
Implementing modular domain specific languages and
analyses. In Proceedings of the 9th Workshop on
Model-Driven Engineering, Verification and Validation,
MoDeVVa ’12, pages 35–40. ACM, 2012.

[32] D. Ratiu, M. Völter, B. Kolb, and B. Schätz. Using
Language Engineering to Lift Languages and Analyses
at the Domain Level. In 5th International Symposium,
NASA Formal Methods, NFM, pages 465–471, 2013.

[33] A. Sharma. Towards a verified cardiac pacemaker.
Technical report, National University of Singapore,
School of Computing, Nov. 2010.

[34] J. M. Spivey and J. Abrial. The Z notation. Prentice Hall
Hemel Hempstead, Hertfordshire, UK, 1992.

[35] O. Tkachuk, M. B. Dwyer, and C. S. Pasareanu.
Automated environment generation for software
model checking. In 18th IEEE International Conference on
Automated Software Engineering, ASE 2003, pages
116–129. IEEE Computer Society, 2003.

[36] M. Voelter. Language and IDE Development,
Modularization and Composition with MPS. In
Generative and Transformational Techniques in Software
Engineering IV, International Summer School, GTTSE 2011,
Braga, Portugal, LNCS, pages 383–430. Springer, 2011.

[37] M. Voelter, S. Benz, C. Dietrich, B. Engelmann,
M. Helander, L. Kats, E. Visser, and G. Wachsmuth.
DSL Engineering – Designing, Implementing and Using
Domain-Specific Languages. CreateSpace Publishing
Platform, 2013.

[38] M. Voelter, D. Ratiu, B. Kolb, and B. Schätz. mbeddr:
Instantiating a Language Workbench in the Embedded
Software Domain. Journal of Automated Software
Engineering, 20(3):339–390, 2013.

[39] M. Voelter, D. Ratiu, B. Schätz, and B. Kolb. mbeddr: an
extensible C-based programming language and IDE for
embedded systems. In Proc. of Conference on Systems,
Programming, and Applications: Software for Humanity,
SPLASH ’12, pages 121–140. ACM, 2012.

[40] M. Voelter, D. Ratiu, and F. Tomassetti. Requirements as
First-Class Citizens. In Proc. Modellbasierte Entwicklung
eingebetteter Systeme IX, MBEES ’13, Schloss Dagstuhl,
pages 44–49, 2013.

