
Supporting Diverse Notations
in MPS’ Projectional Editor

Markus Voelter1 and Sascha Lisson2

1 independent/itemis, voelter@acm.org
2 itemis AG, lisson@itemis.de

Abstract. To be able to build effective DSLs, these DSLs must not just
use language concepts that are aligned with their respective domain, but
also use notations that correspond closely to established domain notations
– and those are often not purely textual or graphical. The underlying lan-
guage workbench must support these notations, and combining different
notations in a single editor must be supported as well in order to support
the coherent definitions of systems that use several DSLs. In this paper
we provide an overview over the notations supported by JetBrains MPS.
MPS is a language workbench that uses a projectional editor, which, by
its very nature, can deal with many different notational styles, including
text, prose, math tables and graphics. The various supported notations
are illustrated with examples from real-world systems.

1 Introduction

The GEMOC 2014 workshop description states: To cope with complexity, modern
software-intensive systems are often split in different concerns, which serve diverse
stakeholder groups and thus must address a variety of stakeholder concerns. These
different concerns are often associated with specialized description languages and
technologies, which are based on concern-specific problems and solution concepts.
In particular, these different concerns also require different notations. Ideally,
these notations are closely aligned with existing domain-specific notations used
by the stakeholders. However, such existing notations are not necessarily just text:
they use forms, diagrams, mathematical symbols, a mix of prose and structure
or combinations of those. Representing such diverse notations faithfully requires
a high degree of flexibility in the kinds of editors that can be built with the
language workbench used to create the languages.

Projectional editing (see Section 2) allows creating editors that can use a wide
variety of notations, including the ones mentioned above. In particular, it can also
mix these notations seamlessly, leading to a more faithful representation of existing
domain languages in tools. JetBrains MPS is one of the leading projectional
editors, and this paper describes its capabilities in terms of notational flexibility.

Contribution This paper provides an overview over the notational styles
currently supported by MPS. For each style we discuss why it is useful, where it
is being used as well as some details about how to define the respective editors.

Availability of the Code JetBrains MPS is open source software available
from http://jetbrains.com/mps. Also, those editor facilities that are separate
plugins to MPS are open source software and their repositories are indicated in
each case. The examples shown in this paper are mostly based on mbeddr [1] and
are open source as well. The screenshots in Figures 7, 9 and 10 are taken from a
commercial tool currently being developed by Siemens PLM software; however,
the underlying editor facilities are all open source as well.

Structure In the next section we provide a brief overview over MPS’ projectional
editor and show briefly how to implement regular text editors. Section 3 introduces
the fundamental notations supported by MPS and Section 4 discusses other useful
features of the MPS editor. We conclude the paper with a brief discussion and
summary in Section 5.

2 Projectional Editing in MPS

What is Projectional Editing? In parser-based editors users type sequences
of characters into a text buffer. The buffer is parsed to check whether the sequence
of characters conforms to a grammar. The parser ultimately builds an abstract
syntax tree (AST), which contains the relevant structure of the program, but omits
syntactic details. Subsequent processing (linking, type checks, transformation) is
based on the AST. Modern IDEs (re-)parse the concrete syntax while the user
edits the code, continuously maintaining an up-to-date AST in the background
that reflects the code in the editor’s text buffer. However, even in this case, this
AST is created by a parser-driven transformation from the source text.

A projectional editor does not rely on parsers. As a user edits a program, the
AST is modified directly. Projection rules are used to create a representation of
the AST with which the user interacts, and which reflects the resulting changes.
No parser-based transformation from concrete to abstract syntax is involved. This
approach is well-known from graphical editors: when editing a UML diagram,
users do not draw pixels onto a canvas, and a “pixel parser” then creates the
AST. Rather, the editor creates an instance of uml.Class when a user drops a
class. A projection engine renders the class as a rectangle. As the user edits the
program, program nodes are created as instances of language concepts. Programs
are stored using a generic tree persistence format (such as XML).

The projectional approach can be generalized to work with any notation,
including textual. A code-completion menu lets users create instances based on
a text string entered in the editor called the alias. The aliases allowed in any
given location depend on the language definition. Importantly, every next text
string is recognized as it is entered, so there is never any parsing of a sequence
of text strings. In contrast to parser-based editors, where disambiguation is
performed by the parser after a (potentially) complete program has been entered,
in projectional editors disambiguation is performed by the user as he selects
a concept from the code-completion menu. Once a node is created, it is never
ambiguous, irrespective of its syntax : every node points to its defining concept.
Every program node has a unique ID, and references between program elements
are represented as references to the ID. These references are established during

Fig. 1. Editor definition for the IfStatement (details in the running text).

program editing by directly selecting reference targets from the code-completion
menu; the references are persistent. This is in contrast to parser-based editors,
where a reference is expressed as a string in the source text, and a separate name
resolution phase resolves the target AST element after the text has been parsed.

Projectional editing has two advantages. First, it supports flexible composition
of languages because the ambiguities associated with parsers cannot happen
in projectional editors. We do not discuss this aspect in this paper and refer
the reader to [2]. The other advantage of projectional editors is that, since no
parsing is used, the program notation does not have to be parseable and a wide
range of notations can be used. This paper focusses on this aspect. Traditionally,
projectional editors have also had disadvantages relative to editor usability and
infrastructure integration; those are discussed in [3].

Defining a Simple Editor In order for the reader to better understand the
explanations in Sections 3 and 4, this section briefly introduces the MPS structure
and editor definitions. MPS’ meta model is similar to EMF Ecore [4]. Language
concepts (aka meta classes) declare children (single or lists), references and
primitive properties. Concepts can extend other concepts or implement concept
interfaces; subtype polymorphism is supported. Programs are represented as
instances of concepts, called nodes. Each concept also defines one or more editors.
These are the projection rules that determine the notation of instance nodes in
the program. Editor definitions consist of cells arranged in various layouts. A cell
can be seen as an atomic element of an editor definition. As an example, let us
consider the if statement in C. Its structure is defined as follows:

concept IfStatement extends Statement
alias: if
children:

condition: Expression[1] elsePart: StatementList[0..1]
thenPart: StatementList[1] elseIfs: ElseIfPart[0..n]

Fig. 1 shows the editor definition for the IfStatement concept. At the top level,
it consits of a collection cell [- .. -] which aligns a sequence of additional
cells in some particular way – a linear sequence in this case. The sequence starts
with the constant (keyword) if and a pair or parentheses. Between those, the
editor projects the condition expression; the % sign is used to refer to children
of the current concept. The thenPart follows, and since it is a StatementList,
it comes with its own curly braces. The (- ... -) collection captures the list
of else if parts, if any. The ElseIfPart comes with its own editor which is
embedded here. Finally, there is an optional set of cells (represented by the ?
and a condition expression that is not shown) that contains the else keyword as
well as the elsePart child. A flag (not shown) determines that the else part is
shown on a new line, leading to the expected representation of if statements.

Fig. 2. Mathematical symbols used in C
expressions embedded into C functions.

Fig. 3. The definition of the sum symbol
editor using the LOOP primitive.

3 Notations

This section discusses the notations supported by MPS. For each we provide a
rationale, an example and a hint on how to build editors that use the style.

Textual Notations The first notation supported by MPS has been textual
notations. Notations used by programming languages such as Java, C or HTML
can be represented easily. The example in the previous section shows how to create
editors for textual notations. The backbone is the indent layout collection cell
which can deal flexibly with sequences of nodes, newlines and indentation.

Mathematical Symbols A plugin [5] supports mathematical notations. The
plugin comes with a set of new layout primitives (cell types) that enable typical
mathematical notations such as fraction bars, big symbols (sum or product),
roots and all kinds of side decorations (as used in abs or floor). The plugin
contributes only the editor cells so they can be integrated into arbitrary languages.
So far they have been integrated into C (Fig. 2) and an insurance DSL.

Fig. 3 shows the definition of the sum editor. It uses the new primitive LOOP
which can be used for everything that has a big symbol as well as things above,
below and right of the symbol. The particular symbol is defined separately and
referenced from the editor definition. The LOOP cell has three slots (lower, upper
and body) into which child nodes can be added. The Sum expression defines
children upper, body and lower, which are mapped to these slots. These slots
can contain arbitrary editor cells, not just child collections: the lower slot contains
a collection that projects the name property, an equals sign and the lower child.

Tables Tables can be used to represent collections of structured data or to
represent two-dimensional concerns. For example, Fig. 4 shows a state machine

Fig. 4. A state machine represented as a table; also shows nested headers.

rendered as a table. Another example used in mbeddr [1] is decision tables
(essentially two nested if statements).

Tables come in several flavors. For example, a row-oriented table has a fixed
set of columns and a variable list of rows. Users can add rows, but the columns
are prescribed by the language definition. In contrast, the state machine shown
in Fig. 4 is a cell-oriented table: users can add new columns (events), new rows
(states) and new entries in the content cells (transitions). The language for
defining tabular editors [6] takes these different categories into account. For
example, the definition for the state machine uses queries over the state machine
model to determine the set of columns and rows. The contents for the transition
cells are also established via queries: each transition is a child of its source state
and references the triggering event. Since both columns and rows can be added
(or deleted) by the user, callbacks for adding and deleting both are implemented.
The code below shows part of the table implementation for state machines.

table
column headers:

group "Events" {
query {

getHeaders (node)->join(string | EditorCell | node<> | Iterable) {
node.inEvents(); }

insert new header (node, index)->void { // callback for inserting }
on delete: (node, index)->void { // callback for deleting }

} }
row headers: // similar
cells:

column count: node.inEvents().size;
row count: node.states().size;
cell: (node, columnIndex, rowIndex)->join(node<> | string | EditorCell | Iterable) {
node<InEvent> evt = node.inEvents().toList.get(columnIndex);
node<AbstractState> state = node.states().toList.get(rowIndex);
node.descendants<Transition>.

where({~it => it.parent==state && it.trigger.event==evt; }); } as vertical list

Prose with Embedded Code One characteristic of projectional editors is
that the language structure strictly determines the structure of the code that
can be written in the editor. While this is useful for code, it does not work for
prose. Hence, an MPS plugin [7] supports ”free text editing” in MPS: all the
usual selection and editing actions known from text editors are supported. The
resulting text is stored as a sequence of IWord nodes. By creating new concepts
that implement the IWord concept interface, other specific nodes can be inserted
into the sequence of words. Said differently, arbitrary structured program nodes
can be embedded into the (otherwise unstructured) prose. The user can press
Ctrl-Space anywhere in the prose block and insert instances of those concepts
that are valid at this location. Fig. 5 shows an example of a requirement with
a prose block that embeds a reference to another requirement. Other examples
include references to arguments in function comments or embedded formulas.

Margin Cells Margin cells are rendered beyond the right editor margin; each
margin cell is associated with an anchor cell inside the editor, and the margin
cell is rendered at the y-position of that anchor cell. Fig. 6 shows an example.
To use margin cells in the editor of some concept, the editor for that concept
embeds a margincell cell which points to the collection that contains the margin

Fig. 5. The prose block includes a sequence of ”normal” words plus a reference to
another requirement (§req(..)). The reference is a real, navigable and refactoring-safe
pointer, not just nice syntax.

contents (the comments in Fig. 6). The contents specified for the margin cell must
implement the IMarginCellContent interface which contributes the facilities
that connect the margin cell content to the anchor cell. Margin cells are available
in the mbeddr.platform at http://mbeddr.com.

Fig. 6. Margin cells used to support Word-like comments in MPS; other contents can
be projected into the margin as well.

Graphics MPS supports editable graphical notations as shown in Fig. 7. They
can be embedded into any other editor. MPS’ support for graphical notations is
new (available since MPS 3.1, June 2014) and not yet as mature as the rest of
MPS, and the API for defining the editor is not yet as convenient as it should be.
The code below shows part of the definition of the editor for Fig. 7: the contents
of a block plus its ports are mapped as the contents of the diagram canvas.

diagram {
content: this.contents,

this.ancestor<Block>.allInPorts().toList,
this.ancestor<Block>.allOutPorts().toList

palette: custom AccentPaletteActionGroup
}

Custom Cells MPS supports embedding custom cells. This means that the user
can plug in their own subclass of CellProvider and implement specific layout
and paint methods. This way, any notation can be drawn in a low-level way. The
cell provider can be parameterized, and ultimately, it can become a new, reusable
primitive. Fig. 8 shows an example of a language that reports progress with
work packages. It uses three custom cells: horizontal lines (parameterizable with
thickness and color), check boxes (that are associated with boolean properties of
the underlying language concept) and progress bars (whose percentage and color
can be customized, typically by querying other parts of the model).

4 Other Features of the MPS Editor

As a language workbench, MPS supports the features known from traditional
IDEs for custom languages. These include code completion, quick fixes, syntax

Fig. 7. A graphical editor embedded in a regular text editor.

coloring, code folding, goto definition, find references and refactorings. In this
section we describe editor features that are specific to MPS’ projectional editor.

Mixed Notations The various notations discussed in the previous section can
all be mixed arbitrarily (with the aforementioned exception of embedding things
into graphical editors). Since all editors use the same projectional architecture
this works seamlessly. In particular, non-textual notations can be used inside
textual notations. Examples include:

– mathematical symbols embedded in textual programs
– tables that contain text or math symbols
– tables embedded in textual programs
– mathematical symbols embedded in prose
– lines, progress bar other other shapes embedded arbitrarily

Multiple Editors A single concept can define several editors, and a given
program can be edited using any of them. Each of the multiple editors has a tag,
and by setting tags in an editor window (either by the user or programmatically),
the editors corresponding to these tags can be selected. For example, state
machines can be edited in a textual version (roughly similar to Fowler’s state
machine DSL [8]) or in the tabular notation shown in Fig. 4.

Partial Syntax Editors can also be partial in the sense that they do not
project all contents stored in the AST. Of course the non-projected aspects of the
program cannot be edited with this particular editor. But the contents remain
stored in the AST (and are cut, copied, pasted or moved) and can be edited later.
Using this facility, programs can be edited in ways specific to the current process

Fig. 8. Custom widgets (checkbox, line, progress bar) used in an MPS editor.

Fig. 9. A querylist is used to project
the ports and contracts inherited from
the interface realized by this block (in
grey). New nodes ports or contracts can
be entered above the grey lines.

Fig. 10. This tooltip shows the defini-
tion of the quantity referenced via the
-> notation: it shows its type and various
additional details. The tooltip uses the
querylist to project derived nodes.

step or stakeholder. An example are the requirements traces shown in Fig. 14;
programs can be shown with or without them.

Query List An MPS editor normally displays nodes at their phyiscal location.
For example, the child condition of the IfStatement shown in Fig. 1 is projected
as part of its parent editor. Sometimes, however, it is useful to render nodes in
other places. An example is shown in Fig. 9: the grey parts are defined by the
interface realized by the block, but they are still projected for the block itself.

To project nodes in locations where they are not defined, a querylist editor
cell is used (available as part of the mbeddr.platform at http://mbeddr.com). Like
other MPS collection cells it projects a list of nodes, but this list is assembled via
an arbitrary model query. The result can be projected read-only (as in Fig. 9)
or fully editable. The querylist also supports callback functions for adding new
nodes (because it is not automtically clear where they would have to be inserted
physically) or for deleting existing ones. This way, querylists support views.

Tooltips MPS can use the projectional editing facilities in tooltips (available
in the mbeddr.platform). To define a tooltip, a special cell is inserted into the
editor of the cell that should display the tooltip. Since the purpose of a tooltip
often is to project information gathered from other parts of the model, tooltip
editors often use querylists (Fig. 10).

Conditional Editors Conditional editors essentially support aspect orientation
for editor cells. A conditional editor defines a decoration for existing editors as
well as a pointcut that determines to which existing editor cells the decoration
is applied. Figures 12 and 13 show examples. Importantly, these conditional
editors can be defined after the fact, and potentially in a different language
module. This way, arbitrary decorations can be overlaid over exiting syntax. The
example in Fig. 12 renders an arrow above all references that have pointer type.
Another example could be to change the background color of some nodes based
on external data such as profiling times. By including a tooltip in the definition
of the decoration, users can get more detailed information by hovering over the
decorated part of the program. Another use case for conditional editors is the
expression debugger shown in Fig. 11.

Fig. 11. This expression debugger renders the values of all subexpression over or to the
left of the expression itself. The original expression (without the debug info) is (10 +
BASEPOINTS) * (alt + speed)).

Annotations Annotations are similar to conditional editors in that they can
render additional syntax around (or next to) existing syntax without the original
syntax definition being aware of this. However, in contrast to conditional editors,
annotations are additional nodes (i.e., they are additional data in the program)
and not just a property of the projection. The additional nodes are stored as
children of the annotated node. Fig. 14 shows an example in which requirements
traces are added to C code (details are discussed in [9]).

Read-Only Contents Especially in DSLs for non-programmers it is often
useful to be able to project rigid, predefined, non-deletable skeletons of the to-be-
written program in order to guide the user. For example, in Fig. 9, the keywords
atomicblock, realizes, contract and ccode, as well as the brackets and lines,
are automatically projected as soon as a user instantiates an atomic block.
Similarly in Fig. 8, the grey line starting with “last updated” is automatically
projected and consists of computed data. In MPS, parts of the syntax of a
program can be marked as readonly, meaning that they cannot be deleted or
changed. This does not just work for constants (keywords), but for arbitraty
content (such as the inherited ports of blocks shown in Fig. 9).

5 Discussion and Summary

In this paper we have discussed the syntactic flexibility supported by MPS’
projectional editor. We have described the various supported notational styles
and emphasized that they can be combined flexibly. However, it is not enough to
just compose different notations – other aspects of languages must be composed
as well. Language composition with MPS is discussed in [2].

Over the last three years a team at itemis has been developing mbeddr [1],
using MPS in a non-trivial development project. Many of the notations discussed

Fig. 12. C references whose type is a
pointer are annotated with the arrow on
top. This works for all kinds of references,
including to arguments, local variables
and global variables.

Fig. 13. The editor applies to concepts
that implemenet IRef and whose type
is pointer. The editor renders the arrow
(manually drawn in the custom cell) on
top of the existing editor.

Fig. 14. The first two constants have traces attached. These are pointers to requirements
shown in the code. The original definition of C is not aware of these annotations.

in this paper are used in mbeddr and its commercial addons. Several of the
extensions have also been developed in the context of mbeddr. In addition, we
are now also developing business applications (in the insurance and financial
domains) with MPS. There, non-textual notations (and in particular, math and
tables) are essential to be able to allow non-programmers to directly contribute
to the programming effort. User feedback is very positive: they said that the
abililty to have such notations is a signigicant advance over existing or alternative
tools and approaches.

Based on this experience we conclude that the notations supported by MPS
are reasonably complete relative to the notational styles encountered in practice.
Classical textual notations are found in programming languages and DSLs; graph-
ical notations are used by many modeling tools; mathematics are widespread in
scientific or financial domains; tables are ubiquitous, as the the popularity of
Excel demonstrates. And prose (with interspersed program elements) is an im-
portant ingredient to almost all these domains (for documentation, requirements
or comments).

Acknowledgements Thanks to Bernd Kolb and Niko Stotz for feedback on
this paper, and to Niko Stotz for building the margin cell notation.

References

1. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: instantiating a language
workbench in the embedded software domain. ASE Journal 20(3) (2013) 1–52

2. Voelter, M.: Language and IDE Development, Modularization and Composition with
MPS. In: GTTSE 2011. LNCS. Springer (2011)

3. Voelter, M., Siegmund, J., Berger, T., Kolb, B.: Towards user-friendly projectional
editors. In: Proceedings of SLE’14. (2014) 20

4. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: eclipse modeling
framework. Pearson Education (2008)

5. Lisson, S.: MPS Math Plugin. https://github.com/slisson/mps-math/
6. Lisson, S.: MPS Tables Plugin. https://github.com/slisson/mps-tables/
7. Lisson, S.: MPS Richtext Plugin. https://github.com/slisson/mps-richtext/
8. Fowler, M.: Domain Specific Languages. 1st edn. Addison-Wesley Professional (2010)
9. Voelter, M., Ratiu, D., Tomassetti, F.: Requirements as first-class citizens. In:

Proceedings of ACES-MB Workshop. (2013)

	Supporting Diverse Notations in MPS' Projectional Editor

