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Abstract. We describe two innovations in programming languages: mod-
ularity and projectional editing. Language modularity refers to the ability
to combine independently developed languages without changing their re-
spective definitions. A language is not anymore a fixed quantity, instead it
can be extended with domain-specific constructs as needed. Projectional
editing refers to a technique of building editors and IDEs that avoid the
need for parsers. They support a wide range of tightly integrated no-
tations including textual, symbolic, tabular and graphical. In addition,
by avoiding parsers, the well-known limitations of grammar composition
are avoided as well. The article illustrates the consequences of these two
innovations for the design of (programming) languages with three exam-
ples. First, we discuss a set of modular extensions of C for embedded
programming that enables efficient code generation and formal analysis.
Second, we discuss a language for requirements engineering that flexibly
combines structured and unstructured (prose) data. Third, we illustrate
a language for defining insurance rules that makes use of mathematical
notations. All examples rely on the open source JetBrains MPS language
workbench.
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1 Introduction

In modular languages, the abstractions provided by the language are not fixed.
Users can pick language extensions from a library and include them into their
programs without changing the host language definition or the IDE. Multiple
independently developed extensions can be used together, and new extensions
can be developed and used at any time. A classification of language composition
approaches is discussed in [1].

A promising approach to developing modular languages is to use language
workbenches. LWBs are environments that support the efficient implementation
of languages and associated tools such as type checkers, compilers, interpreters
and IDEs. The term LWB has been introduced by Martin Fowler [2] in 2004,
even though such tools can already be found in the 80s and 90s (examples in-
clude the Synthesizer Generator [3] or the Meta Environment [4]). Contemporary



examples include Rascal [5], Spoofax [6] or MPS, discussed below. An overview
and comparison of today’s LWBs can be found in [7].

JetBrains MPS? is a open source LWB licensed under Apache 2.0. It has been
developed by JetBrains over the last 10 years, based on the initiative of Sergey
Dmitriev. MPS is used in a number of projects in computational biology [§],
web applications®, embedded software development, requirements engineering
and insurance DSLs (the latter three are discussed later in this article). MPS’
most distinguishing feature is its projectional editor.

Languages typically use either textual and graphical notations; each style
comes with different user experiences and use cases, and their editors also use
different architectures. In textual languages, users interact with the concrete
syntax, entering characters into a text buffer. A parser then matches the se-
quence of characters to the grammar that defines the syntax of the language,
and constructs an abstract syntax tree (AST) of the program. The AST con-
tains much more structure than the flat textual notation. Even though modern
IDEs construct the AST in realtime as the user edits the program (maintaining
an always-up-to-date AST), users interact with the textual source. Graphical
editors are different. If a user, for example, drops a UML class from the palette
onto the diagram, the underlying tool directly modifies the AST (aka the model
in graphical editors). A rendering or projection engine then creates a visual
representation of the AST. This approach can be generalized beyond graphical
notations: the result is called a projectional editor (PE). Relative to textual-
looking notations, it is important to understand that every single text string is
immediately recognized as it is entered, so there is never any “extraction” of the
AST from the concrete syntax by a parser.

This has a number of advantages. Since there is no need to extract the struc-
ture of the program from a flat (textual) source, a wide variety of notations can
be used. MPS, for example, supports textual notations, symbols (such as frac-
tion bars or )_), tables as well as graphical diagrams; these notations can also
be mixed. As we show below, this notational freedom enables languages that are
much closer to the established notations of many application domains.

The implementation of modular languages is also simplified. Since no gram-
mars are used, the limitations of composability known from grammars (and
described wonderfully in [9]) do not apply. Of course, composition of languages
still requires the alignment of the semantics (which can be a challenge), but from
a purely syntactical perspective, there is no limit to composability.

Traditionally, PEs also have drawbacks, which is why they have not seen
much adoption despite their advantages. What distinguishes MPS from earlier
PEs is that it addresses these drawbacks to a degree that makes its use feasible.
The following two drawbacks are the most important. First, for languages that
use a textual syntax, users expect the editor to behave like regular, character-
oriented text editors. Since PEs do not work with sequences of characters, this
can be a challenge. According to the results of a not-yet-published survey, most

4 http://jetbrains.net/mps
5 http://codeorchestra.com/ide/



of our users (programmers and non-programmers) are happy with the editor
after a few days of getting used to it. MPS addresses this challenge with a
variety of approaches discussed in [10]; we mention two examples here. MPS
supports linear editing of expressions such as 2+3 instead of requiring to first
enter + and then the two arguments. Even though no parser is used because every
token is bound immediately when entered, precedence, specified declaratively as
a number for each operator, is taken into account. MPS also supports cross-tree
editing; for example, parentheses can be entered in arbitrary locations to change,
for example, 2+3%4 to (2+3)*4. Both, linear editing and cross-tree editing were
not supported in earlier PEs.

The second challenge of PEs is infrastructure integration. PEs do not store
programs as text, because this would re-introduce parsing and hence negate
the advantages. Instead, the AST is persisted, typically as XML. For use in
practice, the integration of these XML files with version control systems must
be addressed: diff/merge must be supported using the concrete, projected syntax.
MPS supports this, and is used routinely with git or svn.

The remainder of this article uses real-world languages from three different
domains to illustrate how modular languages and projectional editing are used in
(programming) language design. For each example, we describe the context, the
addressed challenges, the way modular languages and PEs are used to address
these challenges as well as preliminary experiences and conclusions. The systems
described in the examples have been built or supported by the authors of this
article.

2 Example: Embedded Programming

Context Embedded software must respect constraints regarding code size,
memory or timing. At the same time, quality, maintainability and safety is
critical. More and more devices contain software, making its importance grow
steadily.

Challenges Much of today’s embedded software is developed in C, because C
code can be optimized manually to meet the constraints mentioned above. But
C lacks the means to build new abstractions effectively, potentially hampering
quality, maintainability and safety. Since new abstractions must imply little or
no runtime overhead, the preprocessor is often used to build them. However,
preprocessor-based abstractions are brittle, because the type checker, the IDE
and static analysis tools only have limited awareness of these abstractions. In the
following we discuss physical units and state machines to illustrate this problem.

Embedded software often works with real-world quantities, and annotating
types and literals with units can enhance type safety by detecting problems
like double/*metersPerSec*/ speed = 150//*’:**//. C does not support annotating
physical units to types and literals in a way that the type checker can detect
such problems. Macros can reasonably be used for conversions (e.g., meters to




feet, m_to_ft(val)). However, neither the IDE nor the compiler knows about
the semantics of these macros and cannot check whether they are used correctly.

State machines can also be implemented using macros. In addition to being
brittle for the reasons mentioned above, the result is also hard to read because of
the limited syntactic flexibility of C macros. In practice, state machines are often
implemented in plain C (using switch statements or cross-indexed arrays and
function pointers) or with an external state machine modeling tool that generates
C code. Both solutions are problematic. In the first case, the semantics of state
machines is lost for the developer, the type checker, compiler and the IDE; it
cannot easily be analysed for dead states or non-deterministic transitions. In the
second case, integration is an issue: the modeling tool usually does not know
the rest of the C-based system, and hence cannot check for the wrong use of
variables or functions in a state machine.

Solution Approach mbeddr® incrementally adds abstractions for embedded
software development to a modularized version of C. In addition to physical units
and state machines (discussed below), mbeddr supports interfaces and compo-
nents, unit testing as well as product line variability, requirements tracing and
documentation. All of these abstractions are modular C extensions, so users can
always fall back to C if the higher level abstractions are not efficient enough.
Users can also build new extensions or create new generators for existing ex-
tensions. IDE support such as type checking, code completion, find usages and
refactoring works seamlessly across language extensions. Debugging of extensions
is supported with an extensible debugger architecture.

One of mbeddr’s extensions is state machines, represented textually. State
machines contain local variables, event declarations as well as states with en-
try/exit actions and transitions with guards and actions. Events are used to
communicate with a state machine’s environment and can be bound to dif-
ferent triggers (e.g., an in event can be bound to an interrupt; an out event
to a function call). The default code generator for state machines generates a
switch statement. However, like every generator in mbeddr, it can be exchanged
with an optimizing generator for specific kinds of state machines or target plat-
forms. Since state machine are represented first-class, they can be model-checked:
mbeddr supports detection of dead states and non-deterministic transitions, and
additional constraints can be defined using temporal logic. Failed properties are
reported in terms of the state machine, not in terms of the generated code.

Another extension is the ability to annotate types and literals with units.
The units are integrated with the C type system: an error is flagged in the IDE,
if, for example, a variable that has the unit m/s is assigned an expression whose
computed unit is different. The annotated units only affect the type system, so
no runtime overhead is incurred. To convert units, conversion rules can be used.
These are type safe in terms of C types as well as units.

Projection and Modularity mbeddr consists of 74 tightly integrated lan-
guages, most of them extensions to C. This modularity has several advantages.

5 http://www.mbeddr.com



From a language developer’s perspective the complexity of the individual lan-
guages is reduced, allowing relatively independent evolution of the languages.
Users can choose which extensions to use in a program so they are not over-
whelmed by a huge, monolithic language. In addition, users can incrementally
grow mbeddr towards their domain by creating new, domain-specific extensions.

mbeddr’s C extensions are not just coarse grained extensions that could easily
be implemented with escapes in parser-based systems. In particular the units
extend the very fine grained type and expression syntax. The ability to combine
extensions — for example, state machines may use units in the guards — emphasize
this.

MPS'’ projectional editor allows mbeddr to show the same model in different
ways. For example, a state machine can alternatively be edited as a table, with
events as the column header and states as row headers. The content cells contain
the transitions for a given state/event combination.

Experience An industrial project currently develops a Smartmeter, with hard
real-time requirements and a memory-constrained target platform. Experience
from this project shows that mbeddr’s abstractions lead to more maintainable
and testable software while at the same time not exceeding the resources available
on the target hardware. Siemens PL (LMS) has selected mbeddr as the basis of
their new controls engineering tool. Among other things, support for graphical
data flow models and tabular data dictionaries is being added to mbeddr. The
experience with mbeddr so far is summarized in [11].

3 Example: Requirements Engineering

Context Requirements are usually expressed as prose, plus some structured
data such as tables. There is tool support beyond Word or Excel, exemplified
by DOORS”. But even in DOORS, requirements are mostly expressed as prose.
Many development processes and industry standards mandate tracing of require-
ments, where implementation artifacts are connected to the requirements that
drive the particular implementation artifact. This aids maintainability, because
the impact of a requirement change can be connected to potentially affected
parts of the implementation.

Challenges Prose is processable only by humans. In addition, it is likely
that the developers who read the requirements misunderstand some of them
and implement the wrong functionality. One approach to address this problem,
is to use controlled natural language, trying to be extremely precise in writing
prose. Another approach is to express those requirements that can be formal-
ized or structured with suitable machine processable languages. However, close
integration between prose and such a diverse and growing set of domain spe-
cific languages is necessary, since some (parts of) requirements will always be
expressed as prose.

" http://www-03.ibm.com/software/products/en/ratidoor
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Fig. 1. Left: Example requirement whose prose description contains variable defini-
tions and a formula. As an example extension, the requirement also contains a pricing
table. The variables, the formula, and the table are program elements and not just
formatted text. Right: An example of traces attached to program code. Such traces
can be attached to programs expressed in any language.

Creating complete and consistent traces is a lot of work and requires disci-
pline, but it also requires tool support: it must be possible to attach traces to
arbitrary program elements, expressed in any implementation language. Most of
today’s development tools do not support this.

Solution Approach mbeddr comes with a requirements language [12]. It rep-
resents each requirement with a unique ID, a summary, and a prose description.
In addition, it allows embedding code expressed in any language into require-
ments, with full IDE support for those languages. Requirements elicitation can
start with prose, and as the understanding grows, some requirements can be
formalized with DSLs. For example, the left side of Fig. 1 contains a table used
for price calculation in a hypothetical telecoms company. The table is not just
formatting: countries and price groups are references to variables defined else-
where. To further support the integrating prose and formal aspects, arbitrary
program nodes can be embedded into prose [13]. The example embeds variable
definitions, which are automatically renamed during refactorings. It also embeds
price calculation formulas. The formulas are real, type checked expressions. Dur-
ing implementation, Java or C code can directly reference variables, formulas,
or the pricing table. Code generators translate these formal descriptions into
executable code.

The right side of Fig. 1 shows an mbeddr state machine. Some states have
traces that point to requirements. Traces can be attached to program elements
expressed in any language. Also, since the traces are actual pointers to require-
ments, they can be followed in reverse. mbeddr supports reports that show which
requirement is traced from which program elements.

Projection and Modularity Language modularity is crucial for the approach.
The basic requirements language that describes each requirement with prose, a
summary, and an ID is generic and reusable. For particular domains, DSLs can be
developed and plugged into the requirements language seamlessly. As illustrated
by the above mbeddr C examples, even these DSLs can be extended further;



for example, an expression language that can be embedded in various kinds of
business rules is a useful reusable asset.

Tracing also relies on language composition and projectional editing by using
MPS’ annotations. These are special kinds of nodes that can be attached to
arbitrary program nodes, without them (or their definitions) being aware of
that. This is useful for "metadata” that is used by specialized tools (e.g., a trace
analyzer), but does not affect the semantics of the core program. Documentation,
requirements traces, or specification of architectural layers are examples.

The benefits of projectional editing are also exploited in the requirements
language. The ability to seamlessly mix unstructured prose with structured pro-
gram nodes is extremely helpful for descriptions in which prose has played, and
will probably always play, an important role (see [13] for details). Requirements
engineers and domain experts can start with prose and then enrich the prose itself
with formal aspects such as references to domain entities, embedded formulas,
or product specific value assignments to variables in the context of product lines.
New ”"embeddable words” can be defined at any time.

The ability to use notations that are not typically associated with languages,
such as tables or mathematical formulas, is extremely useful in requirements
engineering, where users are typically not programmers. Projectional editing is
a good fit, because it can support such notations.

Experience mbeddr had been started as a collection of extensions of C, as
discussed in the previous section. When MPS got support for mixing prose and
program nodes (through a plugin by Sascha Lisson®), we realized MPS’ potential
for requirements engineering as well. The requirements language has been used
in several requirements elicitation projects and has received very good feedback
from its users.

4 Example: Insurance Rules

Context In the insurance industry new products are defined on a regular
basis. The definition includes many, often complex, mathematical formulas to
calculate values for premiums, annuities, reserves or dividends. These formulas
play an important rule in the success of an insurance company. For example, if the
premium is calculated too low, the company might lose money, while a premium
that is too high might hurt sales. Time-to-market also plays an important role:
companies must respond quickly to market opportunities or changes in the law
by offering tailored insurance products. The formulas are typically written and
maintained by actuaries. Actuaries are not programmers, they are mathematical
insurance experts.

Challenges There are two common ways for implementing the insurance for-
mulas today. In the first one, actuaries write the formulas in an informal lan-
guage, and hand this specification over to programmers for implementation (for

8 https://github.com/slisson/mps-richtext



example in Java). There are well-known problems with this approach: errors may
be introduced in the communication between the involved people, and develop-
ment speed is low because of the manual, multi-step process. The alternative is
that the actuaries write their formulas in a formal language with downstream
code generators, without involving programmers. The formal languages used in
practice are essentially simplified programming languages. To use such languages,
actuaries must, to a degree, become programmers, making this approach a tough
sell.

The challenge is to define a language that is formal enough for code genera-
tion, while not alienating or overwhelming actuaries. The example below shows
an early attempt at such a language that uses a conditional assignment based
on a notation inspired by programming languages. It was rejected categorically
because it was perceived to apply general programming syntax to a specialized
insurance problem.

1| CASE

2 WHEN CATV equals D1

3 anui = (SUM (i, 1, k, anui * 6 / prs +prd * (1 /3 +12) ) + 42 ) * arb
4 WHEN CATV equals D2

5 anui = SUM (i, 1, arb , INFWP [ i ] + local )

6 WHEN true

7 anui = SUM (i, 1, 12, cal [ 1 ] + local )

8| ENDCASE

Solution Approach Fig. 2 shows the same conditional assignment with a
notation that uses a column layout instead of keywords. The actuaries found
this notation easy to grasp and accepted it without problems. A more easily
understandable notation was also needed for complex formulas like the one from
the first when clause in the above code:

1l (SUM (1i,1, Kk, anui 6 / prs+prdx* (1i/3+12) ) + 42 ) * arb

While easy to parse for a computer, the linear structure is hard to "parse” for
humans. We decided to use a non-linear, mathematical notation similar to what
actuaries use on paper. The first line in Fig. 2 shows the same formula. The
notation makes the structure immediately clear to users.

Non-programmers want the computer to indicate what must be done next.
Therefore, we use placeholders (such as «condition» in Fig. 2) to indicate loca-
tions in the code where data can be entered. This is perceived to be easier than
an empty editor that requires the user to figure out what is allowed next, possi-
bly via code completion. Partial projections, configured via global settings, allow
users to hide parts or aspects of programs, helping to focus on the task at hand.
One such aspect is debug information. Since expressions have no side-effects,
debugging does not require stepping though the program; the computation can
be illustrated just by showing all intermediate results (see Fig. 3). It turned out
that "test-driven rule development”, and the ability to ”overlay” the test data
over the insurance rules, is very helpful for actuaries.

Projection and Modularity Projectional editing is essential for this system.
Non-linear notations such as sum symbols, fraction bars, the column layout or
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Fig. 2. Domain specific insurance language using column layout, placeholders and
mathematical notation. Using some graphical elements and placeholders helped with
the acceptance of the language by end users.

tables are not practical with parsers. MPS can also use buttons, check boxes or
labels and text fields in an editor. This allows mixing language-like notations
(expressions, statements, math symbols) with UI elements known to the users
from form-like applications, further lowering the adoption barrier.

The debug notation shown in Fig. 3 also illustrates the power of projectional
editing. The debug information is shown only when the debugger is activated.
It is read-only (computed by an interpreter) and updated automatically as test
data changes. The tree-like notation that shows the value of each subexpression
is essentially an automatic side effect of the tree structure of expressions.

Experience The insurance language is currently being developed. During the
sessions with actuaries we received enthusiastic feedback about the notation,
and they came up up with many new ideas to extend the notation with more
insurance-specific symbols and structures. This experience is in stark contrast to
earlier attempts based on more classical programming language notations and

50

anui + prd > 70 prd > 30 X "
10|anui +
prs > 65|30 15 false true
prs > 55/10 4 + prd 35|prd > 70 35|prd > 30
false 30 15
eo|prs > 65
tests: test(70, 70) == 25 AT .
test(35, 60) == 49 s0|prs > 55 4 + 35|prd

Fig. 3. Left, Top: An expression used in insurance rules using a decision table, a
compact notation for nested if statements. Left, Bottom: Two test cases; the first
argument is prd, the second one is prs. Right: The same expression in debug mode,
where intermediate result of every subexpression (computed by an interpreter for a
given test case) are annotated over or to the left of the expression.



tools. In the future, more aspects of the overall insurance product development
workflow will be implemented for the customer, integrating the formulas dis-
cussed above. MPS’ support for language composition makes this possible with
very limited effort.

5 Summary

Based on our experience and feedback from users in domains as diverse as em-
bedded software engineering, requirements management and insurance software,
we conclude that the support for non-textual notations and wide-ranging mod-
ularity provided by projectional editing has significant advantages compared to
“classical” languages. It enables the use of languages for tasks where languages
have not been feasible before.

However, the development of such applications also needs evaluation. While
beyond the scope of this article, our experience is that MPS is a very productive
language workbench, as measured in the size of language implementations and
effort spent (cf. [7]). For example, the state machines extension to mbeddr C was
built in roughly 2 person months. Both MPS and mbeddr are open source; you
can try for yourself.

Finally, it is not absolutely clear that systems such as the ones illustrated in
this article can only be built with projectional editors. Perhaps parsing could
be extended to support the necessary features. However, no such systems built
with parser technology exist today. More systematic research is needed in this
direction.
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