
What is mbeddr?

mbeddr is an set of integrated and extensible
languages for embedded software develop-
ment, plus an IDE with refactorings, a debug-
ger and verification tools. It covers all aspects of
software engineering, including requirements
and product lines, implementation in C as
well as C extensions such as state machines,
physical units, interfaces and components,
testing, and verification. It integrates with build
servers. mbeedr is open source software (Ec-
lipse Public License 1.0). It can be found at
http://mbeddr.com

How is mbeddr extensible?

mbeddr is radically open and supports
extension of the tool and of languages. Lan-
guages can be extended with new language
constructs, typing rules, constraints, gene-
rators or IDE features. In addition, arbitrary
new languages can be added and (optio-
nally) integrated with existing languages.
This is made possible by mbeddr‘s reliance
on JetBrains MPS, a language workbench
that supports the definition, composition and
use of general purpose and domain-specific

languages. It uses a projectional editor, which
supports non-textual notations such as tables
or mathematical symbols, and it supports es-
sentially unconstrained language composition
and extension. Because of the projectional ap-
proach, no parser ambiguities can ever result
from combining languages. When users build
their own extensions, they use the same lan-
guage engineering facilities that the mbeddr
team is using to build the existing languages
— user extensions are not second-class.

Engineering the Future
of Embedded Software.

Boosting productivity and quality by using extensible DSLs,
flexible notations and integrated verification tools.

CONTACT

itemis AG
Kurt Ebert, Director Sales
kurt.ebert@itemis.de	

Meitnerstraße 10
70563 Stuttgart | Germany
Tel. +49 711 342191-0
info@itemis.com | www.itemis.com

00
44

_E
_1

11
3

©
ite

m
is

Implementation

mbeddr comes with an implementation of
C99, with a few minor differences to the stan-
dard. The preprocessor is not exposed to the
user, first-class concepts are provided for the
legitimate uses of the preprocessor (including
a module system). mbeddr also comes with C
extensions addressing common problems in
embedded software development. Interfaces
and components support modular software
design and reuse. State machines can be
embedded in C code. Physical units can be
annotated to types in order to make working
with physical quantities more robust. Testing,
logging and tracing are addressed with first
class language constructs. State-of-the-art
IDE support is available for all extensions,
including syntax highlighting, code comple-
tion, real-time type checks and refactorings.
The implementation concern also ships with
an extensible debugger that is able to debug
on the level of the extensions, so the abstrac-
tions do not break down when debugging
becomes necessary. At the backend layer,
mbeddr relies on a C compiler, and a C de-
bugger (gcc/gdb by default).

Analysis

mbeddr provides static analyses for some of
the extensions in the implementation con-
cern. Existing external tools perform the ana-
lyses. However, mbeddr integrates the tools
tightly by (a) providing language abstractions
to conveniently describe behavior that can
be analyzed, (b) translating this description to
the input of the analysis tool, (c) running the
tool, and (d) lifting the output of the tool back
to the original abstraction level, to make it
easier to understand for the user. The fol-
lowing analyses are available: State machines
can be checked with a symbolic model che-
cker, verifying a set of default properties and
optional user-defined properties. Decision
tables can be checked for completeness and
consistency. Feature model configurations
are checked for consistency. Finally, inter-
face contracts can be checked statically on
components using a C-level model checker.

Process

mbeddr comes with a language for captu-
ring requirements. Traces to requirements
can be attached to any program element
expressed in any language. Arbitrary addi-
tional data, expressed in any language, can
be added to requirements. The product
line support allows the definition of feature
models and configurations. Feature models
can be connected to other artifacts by means
of presence conditions. While presence con-
ditions are static and work for any language,
there is also C-specific support for variabili-
ty at runtime. The documentation language
supports writing prose documents as part of
an mbeddr project, exportable as HTML or
LaTeX. It supports referencing code (with real
references that are renamed if the element
itself is renamed) and program code can be
embedded as text or as an image. The em-
bedded code is updated whenever the do-
cument is regenerated. Visualizations render
diagrams from program structures. Reports
and assessments are customizable queries
over the code.

Test
SupportDefault

Extensions

Backend
Tool

User
Extensions to be defined by users

Decision
Tables

Logging &
Tracing

Compo-
ments

Physical
Units

State
Machines

State Machine
Verifications

Decision
Tables

Component
Contracts

C99Core

JetBrains MPSPlatform

Model
Checking

SMT
Solving

Dataflow
Analysis

C Compiler,
Debugger and Importer

Implementation Concern Analysis Concern Process Concern

Glossaries Use Cases &
Scenarios

PLE
VariabilityVisualization

Documen-
tation

Requirements &
Tracing

Reports &
Assessments

PlantUML LaTeXNuSMV Yices CBMC

Papers, Tutorials,
Screencasts and Download
at http://mbeddr.com

!

SYSTEMS BUILT WITH MBEDDR

Smartmeter: mbeddr‘s components are
used in a highly configurable and testa-
ble system with more than 100.000 LoC.
Physical units improve type safety.

AUTOSAR Software Components: A
German car manufacturer is evaluating
mbeddr to simplify the development of
AUTOSAR software.

A major tool vendor bases their new
generation of engineering tools on mbeddr,
focussing on legacy code reenginee-
ring and controls engineering. Tool to be
announced in early 2014.

