
Testing an ASIC: an mbeddr Case Study

Daniel Stieger1 and Michael Gau2

1 die modellwerkstatt/itemis
2 Bachmann electronic GmbH

Abstract. Last Changed: Feb 22, 2013

1 Contacts for more Info

The asic testing system is developed by Daniel Stieger and Michael Gau, reach-
able via daniel.stieger@modellwerkstatt.org and m.gau@bachmann.info.

2 What is the problem/domain your system addresses?

An ASIC is an electronic chip specifically designed for a particular purpose.
Compared to common integrated circuits (ICs), an ASIC (short for Application-
Specific Integrated Circuit) is a semiconductor device customized for a particular
use, rather than intended for general-purpose use. Typically, an ASIC has only
a single customer, which is exactly the one who led design the chip to put it into
his products.

One of our customers ordered a quite complex ASIC design, providing various
I/O functionalities such as analog/digital conversion, filters and counters. The
ASIC is used in an I/O module for control systems where application engineers
can configure any functionality needed for their applications.

One of the most important features the I/O module provides is an extensive
self test of the ASIC. Therefore, the application engineer can put a test connector
on the I/O module, wiring the output ports to its own input ports. With this
setup, the control system can perform a self test of the I/O module which consists
of approximately 60 cycles of the following procedure:

1. reset chip
2. configure functionality
3. write value to output
4. read value form input and compare it to expected value



The developers of the ASIC came up with an Excel spread sheet that de-
scribed the tests. Each row described one cycle with all configuration details;
write- and expected read values were stored in the columns. What was needed
next was a translation of the Excel file into plain C-code, which is executable by
the control system.

3 How does the system integrate/use mbeddr’s existing
capabilities?

In a first step, an MPS-language for the test descriptions was created. A sin-
gle test (or cycle) consists of a description, configuration settings, values to be
written to the specified output ports and expected values at the respective in-
put ports. Additionally, a description of the problem that was likely to cause a
particular failure was formulated.

In a second step, the Excel file was saved in CSV (comma separated values)
in order to easily read it with a few lines of Java File-IO. This Java code was
plugged into an MPS refactoring: the refactoring imports the data from the CSV
file and built a model in the MPS language that describes the tests.

In a third step, we used mbeddr’s code-generator to translate the test de-
scriptions (cycles) into plain C-code. mbeddr allows importing existing header
files, which describe the environment of the controller system. While writing the
code-generator, code completion, syntax checking and everything else known
from sophisticated IDEs is available, simplifying the task of writing the genera-
tors.

4 Why was mbeddr/MPS chosen as the basis?

Our problem relates strongly to code generation. While there are various lan-
guage workbenches that support Java, to our knowledge only mbeddr/MPS has
strong support for the C language (of course, MPS supports Java as well). With-
out support for C, we would need to write a code-generator in the manner of
concatenating strings. Indeed, it was discussed to write a Visual Basic Macro to
translate the test descriptions to C code. Without any doubt, that would have
result in a very error prone procedure, especially when considering that number
of configuration values and read/write values differed slightly (resulting in quite
different C code per test).

mbeddr/MPS allows for the development of the code-generator itself with full
C IDE support, that is not only syntax highlighting but also syntax checking.
This makes the code generator very maintainable: it is easily readable has has a
clear and understandable structure. From the beginning, the whole code was di-
rectly developed in the code generator itself. Necessary definitions were imported
from header files and referenced in the generator. For us, this is quite the oppo-
site of writing code-generators where the development environment understands
strings only.



Our mbeddr-based code generator automatically generates the necessary C
and header files for our self-test. No further adjustments were need to the gen-
erated code. The code was directly referenced by the build system and could
be re-generated after changes in the test description at any time. mbeddr/MPS
allowed us to implement full round-trip engineering.

mbeddr/MPS supports refactorings. A refactoring is a piece of Java code,
which can access and manipulate a model directly. This makes it quite easy to
change existing code, or – as we did – build a model from scratch by importing
information from another source.

Most important, mbeddr/MPS dramatically accelerated the development by
reducing complexity and installing a common language. As already described, in
a first step a suitable test-language was discussed and implemented, which led
in turn to a common understanding of the used concepts. Taking advantage of
this clearly defined concepts enhanced communication between team members.

5 What is your conclusion?

Based on our experience, mbeddr and MPS is a very appropriate tooling for
Model Driven Software Development (MDSD) when working in C and Java en-
vironments. Java and C are extensively supported by the IDE, not only when
writing solutions or models, but also when developing code generators. Using
mbeddr C in our code generator prevented us from having any syntax errors in
generated code – starting with the first iteration.

The idea of custom refactorings was very appealing to us. With mbeddr and
MPS one can manipulate a model very easily and – of course – with full IDE
support. Refactorings are basically written in Java, any Java package can be
accessed including file-io and access to the IDE user interface (e.g. file-chooser,
message boxes). The refactorings itself are available after compilation in the
menu bar or via context menus in the IDE itself.

Also, mbeddr and MPS clearly supported us in installing an ubiquitous
language (http://martinfowler.com/bliki/UbiquitousLanguage.html) and
improving separation of concerns.

6 What is the status?

The test language is not only used by developers, but also by test engineers. They
can quite easily formulate tests and generate executable C code out of those
descriptions. The Excel-based solution is not used anymore. Test-Engineers are
responsible for developing test, a developer is responsible for the code-generator
to make tests executable.


	Testing an ASIC: an mbeddr Case Study

