
Lego Mindstorms: an mbeddr Case Study

Markus Voelter1 and Bernd Kolb2

1 independent/itemis
2 itemis

Abstract. This case study looks at the first large-scale demo case built
with mbeddr: a set of C extensions for programming Lego Mindstorms
robots. We have developed several robots (and the respective software)
based on a common set of C extensions. Since C-based Mindstorms pro-
gramming is based on the OSEK operating system, this case study has
relevance beyond Lego.

Last Changed: Feb 1, 2012

1 Contacts for more Info

The Lego Mindstorms case study has been developed by the mbeddr team, in par-
ticular Bernd Kolb (kolb@itemis.de) and Markus Voelter (voelter@acm.org).

2 What is the problem/domain your system addresses?

Lego Mindstorms provides the ability to program lego models. The system
comes with an ARM processor and a number of sensors and actuators to build
various kinds of computer-controlled machines. The software can be written in
various ways, from a visual programming language provided by Lego, a version
of Java, as well as C. In this case study we use the C-based way of programming
mindstorms.

The C-based way of programming Mindstorms is based on the OSEK oper-
ating system . OSEK is used a lot in automotive embedded software, which is
why this case study is relevant beyond Lego. The OSEK implementation used
for Mindstorms in Lejos OSEK .

3 Why was mbeddr/MPS chosen as the basis?

mbeddr was used as the basis because this case study was explicitly intended to
be an mbeddr demo.

4 How does the system integrate/use mbeddr’s existing
capabilities?

For example, a interface DriveTrain supports a high-level API for driving the
robots. We use pre- and postconditions as well as a protocol state machine to
define the semantics of the interface.

exported c/s interface DriveTrain {
void driveForwardFor(uint8 speed, uint32 ms)
pre(0) speed <= 100
post(1) currentSpeed() == 0
protocol init(0) -> init(0)

void driveBackwardFor(uint8 speed, uint32 ms)
pre(0) speed <= 100
post(1) currentSpeed() == 0
protocol init(0) -> init(0)

void driveContinouslyForward(uint8 speed)
pre(0) speed <= 100
post(1) currentSpeed() == speed
protocol init(0) -> new forward(1)

void driveContinouslyBackward(uint8 speed)
pre(0) speed <= 100
post(1) currentSpeed() == speed
protocol init(0) -> new backward(2)

query uint8 currentSpeed()
void stop()
post(0) currentSpeed() == 0
protocol *(-1) -> init(0)

void turnLeft(uint8 turnDeltaSpeed)
protocol init(0) -> init(0)

void turnRight(uint8 turnDeltaSpeed)
protocol init(0) -> init(0)

}

Components then implement the interfaces and keep global state. For example,
the DriveTrainImpl component provides the DriveTrain interface and keeps
track of the current speed, something that cannot easily be queried from the
robot itself.

The motors are encapsulated into interfaces/components as well. This way,
we can provide dummy/mock implementations to simulate the robot without
using the Mindstorms hardware and API.

Other convenience components such as the Orienter use the drive train
underneath and provide a high-level approach to orienting the robot based on
the compass sensor. The compass sensor itself requires a non-trivial sequence of
operations to retrieve an actual heading. This is encapsulated in the component.

void orienter_orientTowards(int16 heading, uint8 speed, DIRECTION dir)
<- op orienter.orientTowards { int16 currentDir = compass.heading();

if (dir == COUNTERCLOCKWISE) {
motorLeft.set_speed(-1 * ((int8) speed));
motorRight.set_speed(((int8) speed));
while (!(currentDir in [heading - 4 .. heading + 4])) {
currentDir = compass.heading();

}
} else {
motorLeft.set_speed(((int8) speed));
motorRight.set_speed(-1 * ((int8) speed));
while (!(currentDir in [heading - 4 .. heading + 4])) {
currentDir = compass.heading();

}

}
motorLeft.stop();
motorRight.stop();

}

State Machines: One of the robots is configured to drive around an obsta-
cle course. It has an ultrasound sensor that can detect obstacles and a a set of
bumper sensors at the front and at the back. Whenever the robot detects an
obstacle with one of these sensors, it backtracks, turns, and tries again. It uses
slightly different strategies depending on which sensors report a (possible) colli-
sion. The logic that decides where to go when is implemented as a state machine.
The state machine calls out to the above mentioned components to effect the
necessary changes in direction or speed.

Requirements Tracing: For demo purposes we have defined a set of require-
ments for the robot. They are captured with the mbeddr requirements language:

We then use tracing from various implementation artifacts to connect these to
requirements:

Product Line Variability: Lego robots are particularly useful for building
hardware product lines — you can just plug on/off various parts of the robot.
In our case, for example, the bumpers and the compass were easily removable.
The software of the robot has to take into account this variablity. Also, there is
an optional display that is available, so display output must be removed if it is
not configured. An example is below.

5 How was mbeddr extended?

The extensions developed in this system related to first-class support for OSEK
abstractions. These include:

OIL Files: The OSEK operating system has to be configured for each applica-
tion. This configuration determines various aspects of the OS instance including
tasking, scheduling, and memory allocation. To be able to define these OIL files,
we have implemented the OIL language in MPS. This is rather trivial, since
OIL files are essentially nested name-value pairs. Note however, that OIL files
themselves are not C extensions, they are a separate, stand-alone (”external”)
DSL. An example is below.

However, our language implementation does know about the various possible
entries and their properties. The code completion menu below shows the various
options available in OIL files.

After selecting a task, the properties required by a task are pre-initialized;
Events referenced by the task can be referenced directly.

C Extensions for Tasks and Events A major reason why the OIL file
declares tasks and events is that the operating system instance generated from an
OIL file then schedules taks and manages events for the programmer. However,

it is of course necessary to provide implementations of tasks (i.e. specify what
should happen as the task executes). We have implemented a new top level
content task that serves this purpose:

task (SirenTask) {
if (siren.isOn()) {
siren.playOnce();

}
TerminateTask();

}

SirenTask in the code above is actually a reference to the task node declared
in the OIL file of the particular system. This way it is ensured that you can
only define task implementations for tasks declared in the OIL file. Conversely,
the system reports a warning in the OIL file if there is no task implementation
referring to a particular task declaration in the OIL file.

The OSEK API provides various functions for managing events; the code
below uses a few of them.

task (Shoot) {
while (true) {
WaitEvent(ShootEvt);
ClearEvent(ShootEvt);
if (...) {
SetEvent(PoliceCarDriver, SignalHit);

}
}
TerminateTask();

}

In OSEK, the arguments passed into these API functions are simply integers.
In mbeddr, we have built an extension, EventMaskType, which directly acts as
a reference to the events declared in the OIL file; pressing Ctrl-Space directly
shows the available events (ShootEvent and SignalHit are examples in the code
above). This has obvious advantages for program consistency. The code below
shows the declaration of these functions.

external module kernel resources header : "kernel.h" header : <osek.h>
{
void TerminateTask();
void ActivateTask(TaskType task_type);
void ChainTask(TaskType task_type);
void ShutdownOS(StatusType status);
StatusType SignalCounter(CounterType counter);
StatusType WaitEvent(EventMaskType event);
StatusType GetEvent(TaskType task, EventMaskType* event);
StatusType ClearEvent(EventMaskType event);
StatusType SetEvent(TaskType task, EventMaskType event);

}

Note how this external module ”wraps” the header files that define the API
provided by OSEK. We redefine the functions using our own TaskType and
EventMaskType. The reason why this works is that these types, when generated
to C, are reduced to the same int types used by the original API. This way,
while we can provide better IDE support and error checking in the IDE, the
generated code is still compatible with the original API, without any overhead.

Custom Build Support Lejos-OSEK comes with its own particular flavor of
make files for building executables. Also, there are some peculiarities about how
binaries are configured. For this reason we have built a new kind of platform
that plugs into the mbeddr build system:

The platform specifies the OIL file to be used for a given system and specifies that
path to the build infrastructure provided by Lejos-OSEK. Also, a new generator
for BuildConfigurations is provided which translates BuildConfigurations
to valid Lejos-OSEK make files.

6 What is your conclusion?

The main purpose of this system is to act as a demo for mbeddr. It serves this
purpose well. Developing it helped us uncover and fix all kinds of bugs in the
mbeddr system.

However, the development also proved that the idea of mbeddr works: the
components and state machines do make the code more readable, more flexible
and easier to test. This is achieved without any significant runtime overhead —
we were able to run the binaries on the Lego target hardware.

It also showed that project- or platform-specific C extensions are useful and
can be built with very limited effort and without changing the C base lan-
guage itself (the tasks, event types, etc.). OIL files demonstrate the integration

of platform-specific artifacts into the overall system, integrating with type check-
ing, error reporting and IDE support3.

Finally, the case study shows that custom build infrastructures (make file
formats, compilers) can be integrated into mbeddr using the hooks provided for
just that purpose.

7 Status? Is it in use yet?

We have built several applications for Lego Mindstomrs based on this infrastruc-
ture. The code is currently not in the Open Source repository because we do not
have the resources to keep it up-to-date as mbeddr changes. However, we expect
to open source the code at some point.

3 This is an example of one of the major ideas of mbeddr: what is often considered
tool support in classical tools is just simply language engineering in mbeddr. The
tool itself (MPS) is generic.

	Lego Mindstorms: an mbeddr Case Study

