
mbeddr - Extensible languages
for embedded software development

Tamás Szabó1, Markus Voelter2, Bernd Kolb1, Daniel Ratiu4, and Bernhard Schaetz3

1itemis AG, {tamas.szabo | bernd.kolb}@itemis.de

2independent/itemis AG, voelter@acm.org

3Fortiss, schaetz@fortiss.de

4Siemens AG, daniel.ratiu@siemens.com

ABSTRACT
In this industrial presentation we will demonstrate mbeddr,
an extensible set of integrated languages for embedded soft-
ware development. After discussing the context of the talk,
we will give details about the mbeddr architecture, which
relies on the MPS language workbench. Then we will elab-
orate on the extension modules and show how they fit with
safety-critical development processes. Finally we will point
out how the existing languages can be extended by the user
by giving some real-world examples, including a language
construct that could have prevented the Apple “goto fail”
bug as well as mathematical notations.

Keywords Domain Specific Languages and Tooling, Em-
bedded Systems, Language Workbenches, Synthesis of Tai-
lored Tools

1. CONTEXT
Todays’ embedded systems are highly diverse, often very
complex and many domains are safety-critical, where hard-
ware or software failures may cost lives or a lot of money. An
adequate language and tool can ease the development of such
systems in many ways; it can ensure the well-formedness of
the content and increase the productivity of the developer
through the automation of many tedious and repetitive (thus
error-prone) tasks, while it can also help in the verification
of the critical properties of the system.

The C programming language is often used for the devel-
opment of low-level control algorithms. On the plus side,
the developer has precise control over memory management
and it can be used to generate efficient binaries out of the
source code. On the other hand, safety-critical domains of-
ten require the introduction of custom abstractions (e.g. for
verification or requirements tracing), which can be problem-
atic in C. Managing and extending large codebases without

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
HILT 2014, October 18–21, 2014, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3217-0/14/10 ...$15.00.
http://dx.doi.org/10.1145/2663171.2663186 .

proper modularization and separation of specification from
implementation can also increase the accidental complexity
of the development processes.

2. mbeddr OVERVIEW
The mbeddr project [8] is an industry-strength IDE for the
C programming language, which aims to ease the design and
development of embedded software. Its core idea is to use
language engineering [7] to introduce additional language
constructs into C. Extensions are modular, and additional
language constructs can be added at any time, and also by
the end user. This is a fundamental shift in the design of
the tools because custom extensions can be created with
minimal effort and without the need to invasively change
the already existing languages. mbeddr relies on the MPS
language workbench [3] to enable language and IDE exten-
sibility and it exists as an open-source project [4]. Figure
1 shows the architecture of mbeddr. The figure also iden-
tifies the three concerns addressed by mbeddr: the imple-
mentation concern addresses the actual implementation of
software, relying on existing C compilers for compilation.
The analysis concern integrates existing verification tools to
statically verify properties of C code. Finally, the process
concern addresses integration into the development process.

The tight integration with external verification tools [6]
also allows non-experts to benefit from the capabilities of
the tools because (i) the input for the verification tool is
automatically generated out of the edited contents and (ii)
the results of the analysis is automatically lifted back to
the abstraction level of the IDE (tracing information is also
generated for the input of the analysis tools).This is a great
benefit, because many people shy away from these tools due
to the high gap between the abstraction levels of the used
tools and because of the complexity of the interpretation of
the results.

3. EXTENSIONS FOR HIGH-INTEGRITY
LANGUAGES

mbeddr introduces many higher level abstractions to provide
a more robust version of the C language, which makes it a
good fit for the development of safety-critical systems:

Separation of specification from implementation In-
terfaces represent the specification and are essentially a set

Figure 1: Overview of the mbeddr architecture

of operation signatures. The implementation of an inter-
face is defined in a component, where the component can
require other interfaces through ports. It then provides the
implementation of the specification by making use of the
required ports. Polymorphic behavior is also introduced
with this approach, because a required port only specifies
the interface, not the implementing component. This con-
struct increases reusability and the developer can create
more loosely-coupled software than in the standard version
of C.

Testing and Verification The components mentioned
above also improve testability because of the improved mod-
ularization. An extension supports the definition of mock
components, further increasing the fidelity of tests. Inter-
faces also specify contracts (pre- and postconditions, pro-
tocol state machines) which can be verified statically or at
runtime.

Physical Units mbeddr makes it possible to use phys-
ical units on types or literals (e.g. time [s], current [A]

or voltage [V]). The type system has been extended with
unit checks and computations (for example, adding V and A

results in a type error and multiplying V and A results in W).
It is also possible to define meta units for functions, which
will be bound based on the units on the input parameters
of a function call. The meta units that are used inside the
function body in a return statement will then be checked
with the specific binding. One can also create conversion
rules between various unit definitions and invoke these con-
versions in the C code (conversion rules will be converted
into macros in the generated C code). Beyond the bene-
fits for type checking, this extension makes the code more
readable and comprehensible.

Decision tables MPS supports notational flexibility within
the IDE. This allows, for example, to insert a decision table
inside the edited source code. Compared to a textual nota-
tion using nested if statements, decision tables are easier
to edit and read. Decision tables can also be automatically
verified for completeness and determinism directly from the
IDE.

State machines Designing and implementing complex
protocols can be cubersome in plain source code. Apart

from the readability issues the verifiability of the algorithm
is also an important concern. mbeddr helps here with the
introduction of state machines. Interesting properties of the
designed state machine can then be verified through model
checking; counterexamples are lifted back to the abstraction
level of the state machine if the verification finds an error.

Requirements tracing Development processes and cer-
tification standards emphasize the traceability between the
implementation and the corresponding requirements. Many
interesting impact analyses can be carried out if proper tool-
ing is provided for the maintenance and update of traces.
mbeddr makes it possible to easily specify requirements in
the IDE and then link these requirements to corresponding
implementation artifacts.

All of the extensions mentioned above are shipped with
mbeddr and can be extended or enhanced even further to
fully meet the requirements of the specific domain. In the
end all of these constructs will be transformed to C99 source
code, possibly in several steps. For example state machines
embedded in components are first transformed to regular
component implementations, those are then transformed to
C, which is finally transformed to text for compilation.

4. CUSTOM EXTENSIONS
Apple has recently become “famous” for the goto fail bug,
which was about a security flaw during the authentication
of SSL certificates. A snippet of the corresponding C source
code is shown on Figure 2 and the whole file can be found
at [5]. The code tries to validate an SSL certificate using
the multi-step error checking idiom where different kinds of
validations are performed in a sequential order and the first
failure will result in a jump to the error-handling routine
(marked with the fail label here). As a consequence of
the additional goto statement (marked in red) the program
will immediately jump to the error-handling code instead of
following the mentioned idiom. The err variable will not be
set and the function will always return 0, indicating that the
certificate is always valid.
This scenario could have been easily avoided in mbeddr with
a small language extension for a try-catch-like construct
(shown in Figure 3). The idea is to execute the separate

Figure 2: The original goto fail bug

Figure 3: try-sequentially construct as a C language exten-
sion

branches of the multi-step error checking logic sequentially
in the try block and free the developer from the need to write
the individual return value checks. The construct will make
sure that upon the presence of a non-zero return value, the
logic in the catch block will be executed to handle the erro-
neous behavior. The generated C code will look exactly like
the multi-step error checking in Apple’s source code (with
the if statements), but this low-level goto logic is automat-
ically generated. This makes sure that errors such as the
goto fail can be avoided. The extension code is more read-
able and less error prone. A modular extension such as this
one can be built in 15 minutes; this is a nice example of the
benefits of language extensions.
Another extension introduces mathematical notations to C
(this functionality is part of mbeddr itself). Figure 4 shows
an expression embedded in C code, which uses logarithm,
fractions, summation and also muliplication. This seamless
integration increases the readability of mathematical expres-
sions and algorithms, making it easier to validate them (by
simply looking a lot alike as they would do in a book or
paper). A real-world project is using this language exten-
sion to implement complex calculation rules in the insurance
domain.

5. CURRENT STATE AND OUTLOOK
mbeddr has been developed as part of a government-funded
research project and it is now open-source software hosted at
eclipse.org. Its continued development is ensured by itemis
and fortiss; several other companies are interested and are
investigating the use of mbeddr.

Figure 4: Mathematical notation in the C code

mbeddr is currently being used by itemis’ French sub-
sidiary to develop a commercial smart meter. It is currently
ca. 100,000 lines of C code. Components, units and state
machines have been used successfully, significantly improv-
ing the testability (and hence, reliability) of the overall sys-
tem. In addition, a set of commercial mbeddr add-ons are
currently being developed by Siemens PL. The extension
languages include data flow diagrams as well as systematic
management of controlled names.

In the future we will be working on adding specific support
for functional safety, including languages for code-integrated
fault-tree analyses [2] and failure mode and effects analyses
[1].

6. REFERENCES
[1] Failure mode and effects analysis -

http://goo.gl/3CoKV (as on 21.07.2014).

[2] Fault tree analysis - http://goo.gl/XQBevA (as on
21.07.2014).

[3] Jetbrains MPS (Meta Programming System) -
http://www.jetbrains.com/mps/.

[4] The mbeddr project - mbeddr.com.

[5] The original source code for the Apple goto fail:
http://goo.gl/ZiAFhk.

[6] D. Ratiu, B. Schaetz, M. Voelter, and B. Kolb.
Language engineering as an enabler for incrementally
defined formal analyses. In Software Engineering:
Rigorous and Agile Approaches (FormSERA), 2012
Formal Methods in, pages 9–15, June 2012.

[7] Markus Voelter, Sebastian Benz, Christian Dietrich,
Birgit Engelmann, Mats Helander, Lennart C. L. Kats,
Eelco Visser, and Guido Wachsmuth. DSL Engineering
- Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[8] Markus Voelter, Daniel Ratiu, Bernd Kolb, and
Bernhard Schaetz. mbeddr: instantiating a language
workbench in the embedded software domain.
Automated Software Engineering, 20(3):339–390, 2013.

	Context
	mbeddr overview
	Extensions for high-integrity languages
	Custom extensions
	Current State and Outlook
	References

