
mbeddr C
An extensible version of the

C programming language

for Embedded Programming

C the Difference x C the Future

gefördert durch das BMBF

Förderkennzeichen 01|S11014

1<5G¦ã:a
you could change

languages like you can
change programs?

Â A Test, written in essentially normal C

Â The same test, but now using additional
language concepts from the unit test extension

Â The same test, but now using additional
language concepts from the unit test extension

Test Cases are a kind of void function, but
with adapted syntax

Â The same test, but now using additional
language concepts from the unit test extension

Asset Statements check conditions; they are
restricted to be used only in test cases.

Â The same test, but now using additional
language concepts from the unit test extension

A special expression that executes tests, and
evaluates to the number of failed tests (which is
then returned to the OS here)

Â The unit testing extensions are
implemented in separate language
module.

Â The constructs become available
to programmers only if they
import the respective language
module into their program

Â This keeps the overall language
clean --- a precondition for
building extensions targetting
different audiences.

mbeddr C

Approach

An extensible C

with support for

formal methods,

requirements

and PLE.

IDE for Everything

A debugger

for all of that
Â The Debugger debugs the code on the level of
the extensions!

Â When defining new language concepts,
language developers also specify how these
concepts should be debugged.

SDK for building

your own

Language

Extensions!
Â This SDK is essentially MPS J, plus

some custom documentation.

IDE for Everything

JetBrains

MPS
Open Source

Language Workbench

Â Apache 2.0

Â Available at http://jetbrains.com/mps

Challenges
in embedded software

development

Abstraction

without

Runtime Cost

Â Abstractions are important to write

maintainable and analyzable software;

however,

Â Abstractions should not incur runtime

overhead (or at least as little as possible)

C considered

unsafe

Â void pointers are evil

Â standards like MISRA -C prohibit certain

constructs from being used in many

organizations

Program

Annotations

Â Things like physical units, value ranges,

or access patterns to data structures are

often defined outside the code program in

some kind of XML

Â .<9¦Ģ¦GLC9¦7<97>9E¦8B9FArG¦>ABJ¦56BHG them,

a separate checker is used --- cumbersome!

Static Checks

and

Verification

Â Model Checking, SAT solving etc. are

ã@CBEG5AG¦GB¦`CEBB:h¦G<9¦7BEE97GA9FF¦B:¦

programs, however,

Â ãG¦ãF¦9KC9AFãI9¦GB¦8B¦BA¦Ģ¦7B89¦FãA79¦ĢrF¦

abstractions are too low -level

Product Lines

and

Requirement

Traces
Â Trace links from code (or other
implementation artifacts) back to
requirements must be supported
Â Product Line Variability must be
handled in a more maintainable way
than #ifdefs

Separate, hard to

integrate Tools

Â 'B89NãA;¦GBBNF¦8BArG¦ãAG9;E5G9¦J9NN¦
with each other, or with manually written
code
Â 'B89NãA;¦GBBNF¦5E9ArG¦E95NNL¦9KG9AFã6N9n¦
making them hard to adapt to specific
domains

mbeddr C

Solution

Philosophy

more specialized domains

more specialized languages

Extension Extension
Â Domains can be seen as

specializations of

others. Each may require

specialized language

 support

more specialized domains

more specialized languages

Extension Extension
Â There is a general

domain the encompasses

all programs writable

 in C

more specialized domains

more specialized languages

Extension Extension
Â Embedded software is a

specialzation of C ---

requiring special

language abstractions

more specialized domains

more specialized languages

Extension Extension
Â Automotive or

Aerospace are subsequent

FC97ã5NãM5GãBAF¦a¦58¦

infinitum, in principle.

Incremental Trafo

Â Assume we have a

module which

contains a

components which in

turn contains a

state machine. How

is this compiled?

Incremental Trafo

Â Assume we have a

module which

contains a

components which in

turn contains a

state machine. How

is this compiled?

Incremental Trafo

Â In the first step,

the state machine

is reduced to a

component operation

that contains e.g.

the usual switch/

case way of

implementing a SM

Incremental Trafo

Â In the next step,

the component is

reduced to a bunch

of normal C methods;

the contains switch

/case statement just

remains unchanged.

Incremental Trafo

Â Finally, we

generate text from

the C program and

feed it into a

regular compiler,

such as GCC. mbeddr

uses incremental

reduction!

Language Extension

Â The core contains all of C plus a
couple of utilities such as
namespaces, closures, real boolean
types and integration with make.
Â A few changes have been made
relative to standard C --- these are
clearly explained in the docs.
Â It is designed to be extensible by
users, e.g. it is simple to provide an
integration with a custom build
infrastructure

Language Extension

Â These standard extensions are intended to be useful by

many embedded software proejects. Most of them will become

Open Source during 2012

Language Extension
Â The SDK lets users build their own language extensions

in a modular way --- without changing the existing

languages, and independent of other extensions.

Subset of

Available

Extensions

All of C

(cleaned -up)
Â no preprocessor (better replacements!),

modules/namespaces, unit tests, C99 primitive types

required, booleans, binary literals, function references,

closures

modules

export

instead of

header

module

imports

Retargettable

Build

Integration

Example: different

target used for

generating lego

NXT Osek make

files (special

format)

Native Support

for Unit Testing

and Logging

Test Case

Assert

Statement

Fail

Statement

Expression to

run a set of

tests

Message

Definitions with

ID, arguments

and explaining

text

Various forms of

report state -

ments to report

messages.

Translated

differently

dependending on

the target

platform

Messages can be

deactivated ---

no reporting,

zero overhead!

Components

Interfaces

Contracts

Instances

Mocks & Stubs

Interface with

Operations

Optionally with

pre - and post

conditions ---

automatically

enforced in

every

implementing

component

Instantiatable,

stateful compo -

nents that

provide and

require ports
Components

implement

operations of

provided ports Optional

overhead -free

translation to

plain C x no

polymorphism

Instantiation

and port

connection

Mock components

specify expected

behavior

Test case uses mocks; if

behavior is different

from specified expected

behavior, the test fails

