
mbeddr C
An extensible version of the

C programming language

for Embedded Programming

C the Difference – C the Future

gefördert durch das BMBF

Förderkennzeichen 01|S11014

What if…
you could change

languages like you can
change programs?

 A Test, written in essentially normal C

 The same test, but now using additional
language concepts from the unit test extension

 The same test, but now using additional
language concepts from the unit test extension

Test Cases are a kind of void function, but
with adapted syntax

 The same test, but now using additional
language concepts from the unit test extension

Asset Statements check conditions; they are
restricted to be used only in test cases.

 The same test, but now using additional
language concepts from the unit test extension

A special expression that executes tests, and
evaluates to the number of failed tests (which is
then returned to the OS here)

 The unit testing extensions are
implemented in separate language
module.

 The constructs become available
to programmers only if they
import the respective language
module into their program

 This keeps the overall language
clean --- a precondition for
building extensions targetting
different audiences.

mbeddr C

Approach

An extensible C

with support for

formal methods,

requirements

and PLE.

IDE for Everything

A debugger

for all of that
 The Debugger debugs the code on the level of
the extensions!

 When defining new language concepts,
language developers also specify how these
concepts should be debugged.

SDK for building

your own

Language

Extensions!
 This SDK is essentially MPS , plus

some custom documentation.

IDE for Everything

JetBrains

MPS
Open Source

Language Workbench

 Apache 2.0

 Available at http://jetbrains.com/mps

Challenges
in embedded software

development

Abstraction

without

Runtime Cost

 Abstractions are important to write

maintainable and analyzable software;

however,

 Abstractions should not incur runtime

overhead (or at least as little as possible)

C considered

unsafe

 void pointers are evil

 standards like MISRA-C prohibit certain

constructs from being used in many

organizations

Program

Annotations

 Things like physical units, value ranges,

or access patterns to data structures are

often defined outside the code program in

some kind of XML

 The C type checker doesn‘t know about them,

a separate checker is used --- cumbersome!

Static Checks

and

Verification

 Model Checking, SAT solving etc. are

important to „proof“ the correctness of

programs, however,

 it is expensive to do on C code since C‘s

abstractions are too low-level

Product Lines

and

Requirement

Traces
 Trace links from code (or other
implementation artifacts) back to
requirements must be supported
 Product Line Variability must be
handled in a more maintainable way
than #ifdefs

Separate, hard to

integrate Tools

 Mode{ing too{s don‘t integrate we{{
with each other, or with manually written
code
 Mode{ing too{s aren‘t rea{{y extensib{e,
making them hard to adapt to specific
domains

mbeddr C

Solution

Philosophy

more specialized domains

more specialized languages

Extension Extension
 Domains can be seen as

specializations of

others. Each may require

specialized language

 support

more specialized domains

more specialized languages

Extension Extension
 There is a general

domain the encompasses

all programs writable

 in C

more specialized domains

more specialized languages

Extension Extension
 Embedded software is a

specialzation of C ---

requiring special

language abstractions

more specialized domains

more specialized languages

Extension Extension
 Automotive or

Aerospace are subsequent

specia{izations … ad

infinitum, in principle.

Incremental Trafo

 Assume we have a

module which

contains a

components which in

turn contains a

state machine. How

is this compiled?

Incremental Trafo

 Assume we have a

module which

contains a

components which in

turn contains a

state machine. How

is this compiled?

Incremental Trafo

 In the first step,

the state machine

is reduced to a

component operation

that contains e.g.

the usual switch/

case way of

implementing a SM

Incremental Trafo

 In the next step,

the component is

reduced to a bunch

of normal C methods;

the contains switch

/case statement just

remains unchanged.

Incremental Trafo

 Finally, we

generate text from

the C program and

feed it into a

regular compiler,

such as GCC. mbeddr

uses incremental

reduction!

Language Extension

 The core contains all of C plus a
couple of utilities such as
namespaces, closures, real boolean
types and integration with make.
 A few changes have been made
relative to standard C --- these are
clearly explained in the docs.
 It is designed to be extensible by
users, e.g. it is simple to provide an
integration with a custom build
infrastructure

Language Extension

 These standard extensions are intended to be useful by

many embedded software proejects. Most of them will become

Open Source during 2012

Language Extension
 The SDK lets users build their own language extensions

in a modular way --- without changing the existing

languages, and independent of other extensions.

Subset of

Available

Extensions

All of C

(cleaned-up)
 no preprocessor (better replacements!),

modules/namespaces, unit tests, C99 primitive types

required, booleans, binary literals, function references,

closures

modules

export

instead of

header

module

imports

Retargettable

Build

Integration

Example: different

target used for

generating lego

NXT Osek make

files (special

format)

Native Support

for Unit Testing

and Logging

Test Case

Assert

Statement

Fail

Statement

Expression to

run a set of

tests

Message

Definitions with

ID, arguments

and explaining

text

Various forms of

report state-

ments to report

messages.

Translated

differently

dependending on

the target

platform

Messages can be

deactivated ---

no reporting,

zero overhead!

Components

Interfaces

Contracts

Instances

Mocks & Stubs

Interface with

Operations

Optionally with

pre- and post

conditions ---

automatically

enforced in

every

implementing

component

Instantiatable,

stateful compo-

nents that

provide and

require ports
Components

implement

operations of

provided ports Optional

overhead-free

translation to

plain C – no

polymorphism

Instantiation

and port

connection

Mock components

specify expected

behavior

Test case uses mocks; if

behavior is different

from specified expected

behavior, the test fails

State Machines

+

Model Checking

in events with

arguments

bounded int

types for better

checking

Out events with

optional bindings

to functions

Statemachine-local

variables

States with

entry and exit

actions

Transition using

C expressions as

guards

Transitions also

have transition

actions

Model Checker

Results as Tabke
A number of

default

properties for

reachability,

non-determinism,

variable ranges

Additional

properties can

be described

using an

abstraction of

LTL/CTL

Counter example if a

property failes ---

clicking on example

highlights code in

model

Requirements

Tracability

Simple way to specify

requirements (kind,

ID, description)

Alternatively import

them from external

tool

Requirements traces

can be attached to

any program element

expressed in any

language --- no

changes to host

language necessary

Requirements kind

and trace kind can be

extended.

And code can also be

edited without the

traces, if developers

prefer that.

Product Line

Variability

Textual Notation for

Feature Models

Optional Feature

Configuration Model

(„intance“ of the

Feature Model) that

selects a set of

features

Code contains

annotations with

boolean expressions

over the features in

Feature Model

Color depends on

expression --- same

expression, same

color

This page shows the

product line mode ---

all options in code

Code in the debug

configuration ---

„everything in“

Code in the

production

configuration ---

„everything out“

Status

and

Availability

http://mbeddr.com

 Introduction, Blog, Papers, Code

LWES
Language Workbenches

for Embedded Systems

Developed in the

gefördert durch das BMBF

Förderkennzeichen 01|S11014

 Project runs till June 2013
 itemis, fortiss, SICK, Lear

Core is

Open Source

(EPL)
 Eclipse Public License
 Essentually no restrictions regarding
commercial use

Some Extensions

will be

Open Sourced

this year

 We have to finish/stabilize them before we
make them available
 Statemachines & Components will certainly
be part of the Open Source package

Custom

Extensions and

Professional

Services by

 Introducing the tool

 Language Definition and Extension

 We‘re {ooking for protype customers!

support for

graphical early

2013
 state machines and block diagrams

 integrated with text

integration

in early 2013

 native integration with Eclipse UI

 EMF export already possible today

mbeddr C
An extensible version of the

C programming language

for Embedded Programming

C the Difference – C the Future

http://mbeddr.com

