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Abstract: Over the last years, as part of the LW-ES KMU Innovativ research project,
a team of developers at itemis and fortiss have developed the mbeddr system, which
relies on language engineering to build a new class of environment for embedded soft-
ware development. In essence, mbeddr consists of a set of extensions to C (such as
state machines, units, interfaces and components) as well as a few additional languages
for requirements engineering, documentation and product line engineering. mbeddr is
still new, but a number of systems have been built with mbeddr. In this paper I sum-
marize some preliminary experience with using mbeddr’s default extensions to build
embedded systems based on a set of case studies. The ability for mbeddr to be ex-
tended is not discussed in this paper, even though this has proven very useful as well.

1 About mbeddr

mbeddr1 is an open source project supporting embedded software development based on
incremental, modular domain-specific extension of C. It also supports other languages, for
example, for capturing requirements, writing documentation that is closely integrated with
code, and for specifying product line variability. Figure 1 shows an overview, details are
discussed in [VRKS13] and [VRSK12]. mbeddr builds on the JetBrains MPS language
workbench2, a tool that supports the definition, composition and integrated use of general
purpose or domain-specific languages. MPS uses a projectional editor, which means that,
although a syntax may look textual, it is not represented as a sequence of characters which
are transformed into an abstract syntax tree (AST) by a parser. Instead, a user’s editing ac-
tions lead directly to changes in the AST. Projection rules render a concrete syntax from the
AST. Consequently, MPS supports non-textual notations such as tables or mathematical
symbols, and it also supports wide-ranging language composition and extension [Voe11]
– no parser ambiguities can ever occur when combining languages.

mbeddr comes with an extensible implementation of the C99 programming language. On
top of that, mbeddr ships with a library of reusable extensions relevant to embedded soft-
ware. As a user writes a program, he can import language extensions from the library
and use them in his program. The main extensions include test cases, interfaces and com-

1http://mbeddr.com
2http://jetbrains.com/mps



Figure 1: The mbeddr stack rests on the MPS language workbench. The first language layer con-
tains an extensible version of C plus special support for logging/error reporting and build system
integration. On top of that, mbeddr introduces default C extensions.

ponents, state machines, decision tables and data types with physical units. For many of
these extensions, mbeddr provides an integration with static verification tools [RVSK12].
mbeddr also supports several important aspects of the software engineering process: doc-
umentation, requirements and product line variability. These are implemented in a generic
way to make them reusable with any mbeddr-based language (we discuss aspects of the
requirements support in detail in the remainder of this paper). Finally, users can build
extensions to any of the existing languages or integrate additional DSLs.

2 Challenges

The goals of the mbeddr project are twofold: first and foremost, mbeddr is an industry-
strength tool for developing embedded software. However, mbeddr is also a research
vehicle for language engineering and language workbenches. In this paper we evaluate
whether the language-oriented approach works for embedded software engineering3.

To evaluate mbeddr’s usefulness, this section introduces challenges in embedded software,
derived from industry experience of the mbeddr team; however, the challenges are in line
with those reported by other authors from different communities (representative examples
are [SK01, Lee00, Lee08, Bro06, KMT12]). The remainder of this paper evaluates the
experience of using mbeddr against these challenges.

Abstraction without Runtime Cost Domain-specific abstractions provide more con-
cise descriptions of the system under development. Examples in embedded software in-
clude data flow blocks, state machines, or interfaces and components. For embedded soft-
ware, where runtime footprint and efficiency is a prime concern, abstraction mechanisms
are needed that can be resolved before or during compilation, and not at runtime.

C considered Unsafe C is efficient and flexible, but some features are considered un-
safe. For example, unconstrained casting via void pointers, using ints as Booleans, the
weak typing of unions or excessive use of macros can result in errors that are hard to track
down. These unsafe features of C must be prohibited in safety-critical domains.

3As a consequence of limited space, this evaluation cannot go into too much detail. We refer the reader to the
papers mentioned in the introduction for further details.



Program Annotations For reasons such as safety or efficiency, embedded systems of-
ten require additional data to be associated with program elements. Examples include
physical units, coordinate systems, data encodings or value ranges for variables.

Static Checks and Verification Embedded systems often have to fulfil safety require-
ments. Standards such as ISO-26262, DO-178B or IEC-61508 require that for high safety
certification levels various forms of static analyses are performed on the software. More
and more embedded software systems have to fulfil strict safety requirements [LT09].

Process Support There are at least three process-related concerns relevant to embedded
software development. First, many certification standards (such as those mentioned above)
require that code be explicitly linked to requirements such that full traceability is available.
Second, many embedded systems are developed as part of product-lines, where each vari-
ant consists of a subset of the (parts of) artifacts that comprise the product-line. This
variability is usually expressed using the C preprocessor via #ifdefs. As a consequence,
variant management is a huge source of accidental complexity. The third process-related
concern is documentation. In most projects, various software architecture and design doc-
uments have to be created and kept in sync with the code. If they are created using Word
or LATEX, no actual connection exists between the documentation and the code. This is
tedious and error prone. Better tool support is urgently required.

3 Example Systems and their Use of mbeddr

To validate the usefulness of mbeddr based on the challenges above, this paper relies on
the experiences from a number of development projects run with mbeddr4. The projects
range from demo applications to real-world development projects:

Smartmeter: The Smartmeter project is the first commercial use of mbeddr and
targets the development of the software for a 3-phase smartmeter. The software com-
prises ca. 40,000 lines of mbeddr code, has several time-sensitive parts that require
a low-overhead implementation and will have to be certified by the future operator.
This leads to an emphasis on performance, testing, formal analyses and requirements
tracing. The software exploits existing code supplied by the hardware vendor in the
form of header files, libraries and code snippets, even though most of the system has
been rewritten by now. Smartmeter is developed by itemis France.

Park-o-Matic: As part of the LW-ES project, BMW Car IT5 has developed an AU-
TOSAR component based on mbeddr. This component, called Park-o-Matic6, coor-
dinates various sensors when assisting the driver to park the car. It is fundamentally a
state-based system. As part of this project, AUTOSAR-specific generators had to be
built for the mbeddr components language. The current mbeddr generators map the
components to plain C. In case of AUTOSAR, components have to integrate with the
runtime environment (RTE), which means, for example, that calls on required port
have to be translated to AUTOSAR-specific macro calls. In addition, an XML file

4Separate documents for some of these can be found at http://mbeddr.com/learn.html
5http://www.bmw-carit.com/
6This is not the actual name; I was not allowed to use the real name in the thesis.



has to be generated that describes the software component so that it can be integrated
with others by an integration tool.

Lego Mindstorms: This example looks at the first significant demonstration project
built with mbeddr: a set of C extensions for programming Lego Mindstorms7 robots.
These robots can be programmed with various approaches and languages, among
them C. In particular, there is an implementation of the OSEK8 operating system
called Lejos OSEK9. We have developed several robots (and the respective software)
based on a common set of C extensions on top of Lejos OSEK. Since OSEK is also
used outside of Lego Mindstorms for real-world embedded applications, this system
has relevance beyond Lego. The system was developed by the mbeddr team.

Pacemaker: This system, developed by students at fortiss, addresses mbeddr’s con-
tribution to the Pacemaker Challenge10, an international, academic challenge on the
development and verification of safety-critical software, exemplified by a pacemaker.
This system emphasizes code quality, verification techniques and systematic manage-
ment of requirements. Performance is also important, since the software must run on
the very limited resources provided by the microcontroller in a pacemaker.

4 Addressing the Challenges

As a means of evaluating mbeddr, this section revisits the challenges introduced in Sec-
tion 2 and shows how mbeddr’s features address these challenges.

4.1 Abstraction without Runtime Cost

This section investigates whether and how mbeddr’s extensions are used in the example
systems, and whether their overhead is acceptable.

Smartmeter: Smartmeter uses mbeddr’s components to encapsulate the hardware-
dependent parts of the system. By exchanging the hardware-dependent components
with mocks, integration tests can be run and debugged on a PC without using the ac-
tual target device. While this does not cover all potential test and debugging scenar-
ios, a significant share of the application logic can be handled this way. In particular,
interfaces and components are used heavily to modularize the system and make it
testable. 54 test cases and 1,415 assertions are used. Physical units are used heavily
as well, with 102 unit declarations and 155 conversion rules. The smartmeter com-
municates with its environment via several different protocols. So far, one of these
protocols has been refactored to use a state machine. This has proven to be much more
readable than the original C code. The Smartmeter team reports significant benefits
in terms of code quality and robustness. The developers involved in the project had
been thinking in terms of interfaces and components before; mbeddr allows them to
express these notions directly in code.

7http://mindstorms.lego.com/
8http://en.wikipedia.org/wiki/OSEK
9http://lejos-osek.sourceforge.net/

10http://sqrl.mcmaster.ca/pacemaker.htm



Park-o-Matic: The core of Park-o-Matic is a big state machine which coordinates
various sensors and actuators used during the parking process. The interfaces to
the sensors and actuators are implemented as components, and the state machine
lives in yet another component. By stubbing and mocking the sensor and actuator
components, testing of the overall system was simplified.

Lego Mindstorms: mbeddr’s components have been used to wrap low-level Lego
APIs into higher-level units that reflect the structure of the underlying robot, and
hence makes implementing the application logic that controls the robot much sim-
pler. For example, an interface DriveTrain supports a high-level API for driving
the robots. We use pre- and post-conditions as well as a protocol state machine to
define the semantics of the interface. As a consequence of the separation between
specification (interface) and implementation (component), testing of line-following
algorithms was simplified. For example, the motors are encapsulated into interfaces/-
components as well. This way, mock implementations can be provided to simulate
the robot without using the Mindstorms hardware and API. The top-level behavior of
a line-follower robot was implemented as a state machine. The state machine calls
out to the components to effect the necessary changes in direction or speed.

Pacemaker: The default extensions have proven useful in the pacemaker. Pacemaker
uses mbeddr’s components to encapsulate the hardware dependent parts. Further-
more, the pulse generator system is divided into subsystems according to the disease
these subsystems cure. The pacemaker logic for treating diseases is implemented as a
state machine. This makes the implementation easier to validate and verify (discussed
in Section 4.4). Requirements tracing simplifies the validation activities.

Generating code from higher-level abstractions may introduce performance and resource
overhead. In embedded software, this overhead must not be significant. It is not clearly
defined what "significant" means; however, a threshold is clearly reached when a new
target platform is required to run the software, "just because" better abstractions have been
used to develop it, because this will increase unit cost. As part of mbeddr development, we
have not performed a systematic study of the overhead incurred by the mbeddr extensions,
but preliminary conclusions can be drawn from the existing systems:

Smartmeter: The Smartmeter code runs on the intended target device. This means
the overall size of the system (in terms of program size and RAM use) is low enough
to work on the hardware that had been planned for use with the native C version.

Pacemaker: The Pacemaker challenge requires the code to run on a quite limited
target platform, the PIC1811). The C code is compiled with a proprietary C compiler.
The overhead of the implementation code generated from the mbeddr abstractions is
small enough so that the code can be run on this platform in terms of performance,
program size and RAM use.

mbeddr’s extensions can be partitioned into three groups. The first group has no conse-
quences for the generated C code at all, the extensions are related to meta data (require-

11http://en.wikipedia.org/wiki/PIC_microcontroller



ments tracing) or type checks (units). During generation, the extension code is removed
from the program.

The second group are extensions that are trivially generated to C, and use at most function
calls as indirections. The resulting code is similar in size and performance to reason-
ably well-structured manually written code. State machines (generated to functions with
switch statements), unit value conversions (which inline the conversion expression) or
unit tests (which become void functions) are an example of this group.

The third group of extensions incurs additional overhead, even though mbeddr is designed
to keep it minimal. Here are some examples. The runtime checking of contracts is per-
formed with an if statements that check the pre- and post-conditions, as well as assign-
ments to and checks of variables that keep track of the protocol state. Another example
is polymorphism for component interfaces, which use an indirection through a function
pointer when an operation is called on a required port.

In this third group of extensions there is no way of implementing the feature in C without
overhead. The user guide points this out to the users, and they have to make a conscious
decision whether the overhead is worth the benefits in flexibility or maintainability. How-
ever, in some cases mbeddr provides different transformation options that make different
trade-offs with regards to runtime overhead. For example, if in a given executable, an
interface is only provided by one component and hence no runtime polymorphism is re-
quired, the components can be connected statically, and the indirection through function
pointers is not necessary. This leads to better performance, but also limits flexibility.

We conclude that mbeddr generates reasonably efficient code, both in terms of overhead
and performance. It can certainly be used for soft realtime applications on reasonably
small processors. We are still unsure about hard realtime applications. Even though Smart-
meter is promising, more experience is needed in this area. In addition, additional abstrac-
tions to describe worst-case execution time and to support static scheduling are required.
However, these can be added to mbeddr easily (the whole point of mbeddr is its extensi-
bility), so in the long term, we are convinced that mbeddr is a very capable platform for
hard realtime applications.

Summing up, the mbeddr default extensions have proven extremely useful in the develop-
ment of the various systems. Their tight integration is useful, since it avoids the mismatch
between various different abstractions encountered when using different tools for each ab-
straction. This is confirmed by the developers of the Pacemaker, who report that the fact
that the extensions are directly integrated into C as opposed to the classical approach of
using external DSLs or separate modeling tools, reduces the hurdle of using higher-level
extensions and removes any potential mismatch between DSL code and C code.

4.2 C considered Unsafe

The mbeddr C implementation already makes some changes to C that improve safety. For
example, the preprocessor is not exposed to the developer; its use cases (constants, macros,
#ifdef-based variability, pragmas) have first-class alternatives in mbeddr that are more
robust and typesafe. Size-independent integer types (such as int or short) can only be



used for legacy code integration; regular code has to use the size-specific types (int8,
uint16, etc.). Arithmetic operations on pointers or enums are only supported after a cast;
and mbeddr C has direct support boolean types instead of treating integers as Booleans.

Smartmeter: Smartmeter is partially based on code received from the hardware ven-
dor. This code has been refactored into mbeddr components; in the process, it has also
been thoroughly cleaned up. Several problems with pointer arithmetics and integer
overflow have been discovered as a consequence of mbeddr’s stricter type system.

More sophisticated checks, such as those necessary for MISRA-compliance can be inte-
grated as modular language extensions. The necessary building blocks for such an exten-
sion are annotations (to mark a module as MISRA-compliant), constraints (to perform the
required checks on modules marked as MISRA-compliant) as well as the existing AST,
type information and data flow graph (to be able to implement these additional checks).

Finally, the existing extensions, plus those potentially created by application developers,
let developers write code at an appropriate abstraction level, and the unsafe lower-level
code is generated, reducing the probability of mistakes.

Smartmeter: Smartmeter combines components and state machines which supports
decoupling message parsing from the application logic in the server component. Pars-
ing messages according to their definition is notoriously finicky and involves direct
memory access and pointer arithmetics. This must be integrated with state-based
behavior to keep track of the protocol state. State machines, as well as declarative
descriptions of the message structure12 make this code much more robust.

4.3 Program annotations

Program annotations are data that improves the type checking or other constraints in the
IDE, but has no effect on the binary. Physical units are an example of program annotations.

Smartmeter: Extensive use is made of physical units; there are 102 unit declara-
tions in the Smartmeter project. Smartmeters deal with various currents and voltages,
and distinguishing and converting between these using physical units has helped un-
cover several bugs. For example, one code snippet squared a temperature value and
assigned it back to the original variable (T = T * T;). After adding the unit K to
the temperature variable, the type checks of the units extension discovered this bug
immediately; it was fixed easily. Units also help a lot with the readability of the code.

As part of mbeddr’s tutorials, an example extension has been built that annotates data
structures with information about which layer of the system is allowed to write and read
these values. By annotation program modules with layer information, the IDE can now
check basic architectural constraints, such as whether a data element is allowed to be
written from a given program location.

In discussions with a prospective mbeddr user other use cases for annotations were dis-
covered. Instead of physical units, types and literals could be annotated with coordinate
systems. The type checker would then make sure that values that are relative to a local

12This is an extension that is being built as this thesis is written.



coordinate system and values that are relative to a global coordinate systems are not mixed
up. In the second use case, program annotations would have been used to represent secure
and insecure parts of a crypto system, making sure that no data ever flows from the secure
part to the insecure part. Both customer projects did not materialize, though.

4.4 Static Checks and Verification

Forcing the user to use size-specific integer types, providing a boolean type instead of
interpreting integers as Boolean, and prohibiting the preprocessor are all steps that make
the program more easily analyzable by the built-in type checker. The physical units serve
a similar purpose. In addition, the integrated verification tools provide an additional level
of analysis. By integrating these tools directly with the language (they rely on domain-
specific language extensions) and the IDE, it is much easier for users to adopt them.

Smartmeter: Decision tables are used to replace nested if statements and the com-
pleteness and determinism analyses have been used to uncover bugs. The protocol
state machines are model-checked. This uncovered bugs introduced when refactoring
the protocol implementation from the original C code to mbeddr state machines.

Pacemaker: The core behavior of the pacemaker is specified as a state machine.
To verify this state machine and to prove correctness of the code, two additional C
extensions have been developed. One supports the specification of nondeterministic
environments for the state machine (simulating the human heart), and other one al-
lows the specification of temporal properties (expressing the correctness conditions in
the face of its nondeterministic environment). All three (state machine, environment
and properties) are transparently translated to C code and verified with CBMC13.

Park-o-Matic: It was attempted to verify various aspects of the state machine. How-
ever, this failed because the analyses were only attempted after the state machine was
fully developed, at which point it was tightly connected to complex data structures
via complex guard conditions. This complexity thwarted the model checker.

The overall experience with the formal analyses is varied. Based on the (negative) expe-
rience with Park-o-Matic and the (positive) experience with Smartmeter and Pacemaker,
we conclude that a system has to be designed for analyzability to avoid running into scal-
ability issues. In Park-o-Matic, analysis was attempted for an almost finished system, in
which the modularizations necessary to keep the complexity at bay were not made.

4.5 Process Support

mbeddr directly supports requirements and requirements tracing, product-line variability
and prose documentation that is tightly integrated with code. This directly addresses the
three process-related challenges identified before. All of them are directly integrated with
the IDE, work with any language extension and are often themselves extensible. For ex-
ample, new attributes for requirements or new kinds of paragraphs for documents can be
defined using the means of the MPS language workbench on which mbeddr relies.

13http://www.cprover.org/cbmc/



Smartmeter: Smartmeter uses requirements traces: during the upcoming certifica-
tion process, these will be useful for tracking if and how the customer requirements
have been implemented. Because of their orthogonal nature, the traces can be at-
tached also to the new language concepts specifically developed for Smartmeter14.

Pacemaker: Certification of safety-critical software systems requires requirements
tracing, mbeddr’s ubiquitous support makes it painless to use. Even though this is
only a demo system for the Pacemaker Challenge, it is nonetheless an interesting
demonstration how domain-specific abstractions, verification, requirements and re-
quirements tracing fit together.

Lego Mindstorms: Lego being what it is, it is easy to develop hardware variants.
We have used mbeddr’s support for product-line variability to reflect the modular
hardware in the software: sensor components have been statically exchanged based
on feature models.

The requirements language has been proven very useful. In fact, it has been used as a
standalone system for collecting requirements. Tracing has also proven to be useful, in
particular, since it works out of the box with any language.

The documentation language has not been used much in the six example systems, since
it is relatively new. However, we are currently in the process of porting the complete
mbeddr user guide to the documentation language. The tight integration with code will
make it very easy to keep the documentation in sync with an evolving mbeddr.

The experience with the product-line support is more varied. The definition of feature
models and configuration works well (which is not surprising, since it is an established
approach for modeling variability). The experience with mapping the variability onto
programs using presence condition is mixed. It works well if the presence condition is
used to remove parts of programs that are not needed in particular variants. However,
once references to variable program parts get involved, the current, simple approach starts
to break down. The same is true if the variability affects the type of program nodes. A
variability-aware type system would be required. At this point it is not clear whether this is
feasible algorithmically and in terms of performance. Also, without enhancements of MPS
itself it is likely not possible to build such a variability-aware type system generically, i.e.
without explicit awareness of the underlying language. This would be unfortunate, since
extensions would have to built in a variability-aware way specifically.

5 Conclusion

In this paper I have reported on some preliminary experience with using mbeddr for de-
veloping embedded software. The results so far are promising, even though more research
is required. Two perspectives are obvious. First, the impact of the ability to build domain-
specific extensions "on the fly" needs to be evaluated, since in this scenario, the effort and
complexity of building mbeddr extensions with MPS becomes important. So far, most

14An important aspect of mbeddr is that project-specific extensions can be developed easily. However, this
aspect of mbeddr is not considered in this paper.



of the extensions (even those specific to Smartmeter) have been built by (or with support
from) the mbeddr team. Second, the benefits of MPS for building flexible and extensible
systems like mbeddr don’t come quite for free: the MPS takes some time to get used to.
We are currently running a survey among MPS and mbeddr users to find out more about
this aspect. mbeddr has also been selected as the basis for a new embedded engineering
tool by a major international tool vendor. While this is not a scientifically relevant result,
it is certainly very encouraging to the mbeddr team.
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