Implementing Modular Domain Specific Languages and
Analyses

Daniel Ratiu
fortiss gmbh
Munich, Germany
ratiu@fortiss.org

Markus Voelter
itemis/independent
Stuttgart, Germany

voelter@acm.org

Zaur Molotnikov
fortiss gmbh
Munich, Germany
molotnikov@in.tum.de

Bernhard Schaetz
fortiss gmbh
Munich, Germany

schaetz@fortiss.org

ABSTRACT

Domain specific languages allow users to directly express do-
main concepts in their programs and thereby eliminate the
accidental complexity resulting from implementation details
irrelevant to the domain. Cleaner programs, written in DSLs
are much easier to analyze formally. However, domain spe-
cific analyses need to be implemented over and over again for
each new domain specific language. In this paper we show
that the use of language engineering techniques for modu-
larizing languages can drastically improve on this situation.
Language fragments (aka. language modules) together with
a set of analyses defined for them can be reused between
different DSLs, making the implementation of analyses sig-
nificantly easier. This paper presents our approach for using
the Meta-Programming System to implement domain spe-
cific languages and analyses both as extensions of C and in
the domain of intelligent buildings. The main lesson learned
is that modularization at language and analysis level allows
rapid instantiation of advanced DSLs and their correspond-
ing analyses.

Keywords

Domain Specific Languages, Validation and Verification

1. INTRODUCTION

Domain-specific languages (DSLs) are languages that are
focussed on a particular domain. By making assumptions
about that domain and encoding these assumptions in the
language itself, a program expressed with a suitable DSL is
more concise than a program that expresses the same behav-
ior, but is written in a general-purpose language. A program
written in a DSL is also more easily analyzable with regards
to the domain, because domain semantics are directly ex-
pressed and do not have to be reverse-engineered from a low

level implementation. A DSL has exactly the right degrees
of freedom, but not more. As an example, consider a DSL
that optimizes energy consumption in an intelligent build-
ing. A rule could express that if temperature is higher than
30 degrees centigrade then start the air conditioner. Identi-
fying those air conditioners that are not controlled by any
rule at all is trivial by making sure that each air conditioner
is referenced from at least one rule. Doing the same for a
C program that controls the air conditioners would be more
difficult due to the encoding of the application logic in the
low level language.

However, there are also analyses that cannot be easily per-
formed by ”just looking” at a program written in a DSL that
is suitable for a particular application domain. Coming back
to our energy management example from above, the detec-
tion of non-controlled air conditioners becomes much more
involved if these devices occur in some rules but if the guard
conditions for these rules will never become true. This is a
typical example of the satisfiability problem, namely check-
ing if a Boolean formula can be true or not. There are many
existing tools that can be used to perform such analyses. For
each analysis tool we need to transform the DSL program
into its input formalism. If we were to analyse different DSLs
with different tools, then many such transformations have to
be implemented (Figure 1). To simplify this approach, we
modularize DSLs along two orthogonal dimensions.

RSN

Figure 1: More than one analysis tool may be suit-
able for analyzing programs written in a particular
DSL, and/or different DSLs may be analyzed with
the same analysis tool.

Application domains
- e.g. embedded systems,
smart buildings

Analysis tools
- e.g. SAT/SMT solvers,
model checkers, provers

Language Layering. The application level is specifically
optimized for a particular application domain, its abstrac-
tions, notations and user preferences. There is effectively
an unlimited set of application domains and associated lan-

Application

Level DSL, DSL; DSL,
Semantic

et 1 N] 1
Analysis

Level A-DSL, A-DSL, A-DSL; | ... | A-DSLy
TechnicalI 1 V\"\

Spaces

Mapping

Tool

Level Tooly Toolz | ...| Toolc

Figure 2: Language layering concerns the separa-
tion of the formalism for expressing input suitable
for certain analyses from the particular tool used to
perform the analyses.

guages. In contrast, the analysis level is optimized to be ef-
ficiently analyzable (and it may not be directly accessible to
application domain users). In practice there is a relatively
small set of established formal verification tools that are
based on different classes of formalisms. We propose a sepa-
ration between the language to encode the input for a class
of specification formalisms and the particular tools which
implement these formalisms (Figure 2). Different tools can
be used to perform the actual analyses on the programs ex-
pressed with an analysis level DSL. The separation of the se-
mantic mapping (from application domain DSL to the anal-
ysis DSL(s) and back) from the integration of the actual
analysis tool has the benefit that different tools with dif-
ferent non-functional characteristics (performance, license)
can be plugged in without changing the semantic mapping.
The often less-than-elegant integration of a particular tool
(relying on text generation, API bridges, parsing of output)
is well encapsulated, effectively forming an anti-corruption
layer [3]. The technical integration of a new or additional
tool may require a significant amount of work (generation of
the input to the tool, interacting with the tool, interpreting
the tool results). But these tasks are domain-independent,
required to be done only once for each tool, and typically
not algorithmically very complex.

Language Modularization. A DSL can often be decom-
posed into several conceptually distinct sub-languages. Each
sub-language is a unit of modularity and in this paper we use
interchangeably the terms language module or sub-language.
Some of these language modules are amenable to analysis.
In the case where a language module is shared between an
application level DSL and analysis level DSL, the mapping
from an application level DSL to one or more analysis level
DSLs is trivial. For example, as we show in this paper, dif-
ferent DSLs may use a sub-language that comprises logical
expressions and access to typed variables. Obvious analyses
relevant for such expressions include checking whether these
expressions cover the whole spectrum of the input values
(completeness) and if there are expressions that can evalu-
ate to true at the same time (consistency). By implementing
these analyses for a shared language module, the analyses
are made available to all the DSLs that reuse this module.

Contributions of this paper. In this paper we show how
language layering and modularization enables an easy and
reusable implementation of domain specific analyses. We

Figure 3: Language modularization refers to the
case where several languages reuse a common lan-
guage module. By defining analyses for the shared
language module, the analyses become available for
all the languages that use the module.

discuss how generic analyses based on satisfiability-modulo
theories can be instantiated for two completely different ap-
plication level DSLs. We show how commonalities between
these DSLs can be factored out, simplifying the analyses
implementation and making it reusable between different
application level DSLs.

2. LANGUAGE MODULARITY IN MBEDDR

Over the last couple of years there has been significant progress
in the area of language and IDE modularization and compo-
sition. In general, modularization is an accepted technique
to break down large and complex problems into smaller and
more tractable ones. This way, modularization can help to
reduce the overall implementation effort and increase qual-
ity by reusing already tested parts of a program. The same
argument can be made for languages, where reuse and com-
position has to address syntax, type systems and semantics.
In [9, 2, 7] various classification schemes for language reuse
and composition have been proposed. While they differ in
detail, they all include the following approaches. Language
extension adds additional constructs to an existing language.
Language restriction removes some concepts from an exist-
ing language. Language embedding joins two previously un-
related languages. In all three cases, the original language(s)
are not modified invasively, retaining modularity.

2.1 Language Workbenches and MPS

Language workbenches are tools that make language and
IDE development, modularization and composition feasible.
There are two fundamentally different approaches for lan-
guage implementation as realized by language workbenches.
Parser-based systems make use of grammars that specify the
textual structure of legal programs expressed in some lan-
guage [. A parser is generated from that grammar which
transforms programs expressed in [into a data structure
that contains the information expressed by a program, but
gets rid of the textual concrete syntax. This data structure
is called an abstract syntax tree (AST). All downstream pro-
cessing (analyses, transformation) is performed on the AST.
Projectional systems work without grammars and parsers:
as a user edits a program, the AST is modified directly and
the program’s textual (or other) syntax is merely a projec-
tion. While parser-based systems support language modu-
larization and composition to some degree, it is easy to do
and well supported in projectional systems. JetBrains MPS
(http://jetbrains.com/mps) is an example of a projectional
language workbench. Its support for language modulariza-
tion and composition is detailed in [9].

2.2 The mbeddr Stack

mbeddr (http://mbeddr.com) is an extensible set of languages
for embedded software development based on C. It is dis-
cussed in more detail in [10]. mbeddr is implemented based
on JetBrains MPS and it exploits its capabilities for lan-
guage modularization and composition to the benefit of the
embedded software developer. At its core, mbeddr supports
the incremental, modular domain-specific extension of C.
mbeddr also supports language restriction, in order to cre-
ate subsets of existing languages.

User H

Extensions H
Default Compo- |Physical State State Machine |Decision
Extensions nents Units | Machines *| Verification |Tables
---- SMT Model T
Core Ccore Solving Checking
Platform JetBrains MPS
Tool C Compiler Yices NuSMV

Implementation Concern E Analysis Concern

Figure 4: mbeddr at a glance

As Figure 4 shows, mbeddr can be seen as a matrix. On the
horizontal-axis it is separated into an implementation con-
cern (left side) and an analysis concern (right side). On the
vertical axis it consists of a number of layers. At the center
is MPS (the platform layer). On top of MPS, mbeddr ships
with a number of core languages. On the implementation
side, the core language is C. On the analysis side, mbeddr
ships with languages that represent different analysis for-
malisms. Currently these comprise languages for specifying
the input for SMT solvers and for specifying the input for
model checkers. The next layer up consists of default ex-
tensions. On the implementation side mbeddr ships C ex-
tensions for interfaces and components, physical units, state
machines plus various smaller C extensions. On the anal-
ysis side, the default extensions include support for model
checking state machines and for consistency and complete-
ness checking of decision tables. Below the common plat-
form JetBrains MPS, mbeddr integrates existing tools that
process the models: the gcc C compiler for the implementa-
tion side, as well as the NuSMV?! model checker and Yices?
and CVC?® SMT solvers. On top of the default extensions,
users can develop their own application level DSLs. These
typically make use of the languages provided in the core and
the default extensions either by directly extending C or its
default extensions or by embedding parts of them into new
application level DSLs. This process is significantly simpli-
fied by MPS support for language reuse and composition.

3. EXAMPLES OF APPLICATION-LEVEL
AND ANALYSIS LEVEL DSLS

In this section we present examples of domain specific lan-
guages that address fundamentally different domains. The
first one (presented in Section 3.2) is an extension of C with
bi-dimensional conditions and is a part of the mbeddr de-
fault extensions. The second one (presented in Section 3.3)

"http://nusmv. fbk.eu/
*http://yices.csl.sri.com/
3http://www.cs.nyu.edu/acsys/cvc3/

is a language that is motivated completely independent from
C for embedded programming and that is focused on defin-
ing energy management rules for smart buildings. In Sec-
tion 3.4 we present SMT analysis level languages. While the
decisions table language is fundamentally domain agnostic,
the second language has a high degree of intentionality and
the addressed domain is very narrow. These two languages,
however, share a common sublanguage that contains expres-
sions, variables and types. Furthermore, the analyses that
can be performed on their programs are similar: checking
if all cases are covered by conditions (completeness) and if
there are different cases that are overlapping (consistency).
These analyses can be easily encoded as SMT problems.

3.1 Expressions Language Modules

A particular language module may be part of several other
languages. The shared module used by our example DSLs
is the expressions module. Expressions are relevant because
they can be found in almost any non-trivial language (in
business rules, state machine guards or controlling intelli-
gent buildings). While the expressions are fundamentally
similar regarding syntax, editor support, typing rules and
transformation to the analysis tool syntax, they also differ
depending on their reuse context in the following ways. Re-
garding their abstract syntax, different languages allow
different kinds of expressions: expressions valid in one lan-
guage can be forbidden in another one, or a certain language
might require additional kinds of expressions. For example,
languages that include functions may support function calls,
simpler languages may not. Regarding the concrete syn-
tax, in different languages, expressions might have different
concrete syntaxes. For example some languages use && and
others & for logical and. Also, languages might use a prefix
or infix notation (& a b vs a & b). Regarding context sen-
sitive constraints, some languages allow only expressions
of a certain form. For example, SMT solvers can deal only
with linear arithmetics and thereby, even though multiplica-
tion is allowed, expressions of form x *y where both x and y
are variables are not allowed (z +y or x * 2 would be valid).

AUTO; |
| MANUAL; [
ERROR;

mode computeNextMode(intl6_t x| mode prev) {

return mode, ERROR x<0jx>»]
prev == MANUAL | AUTO | MANUAL
prev == AUTQ BUTO | MANUAL
prev == ERROR | ERROR | ERROR

{7 Expressions | 1 Variables

——-
L _ | Types

Figure 5: An example decision table. We have high-
lighted the different aspects of the reused language
module.

3.2 Decision Tables

Decision tables exploit JetBrains MPS’ projectional editor in
order to represent two-level nested if statements as a table.

Figure 5 shows an example. Decision tables [4] let users
describe the different result values for different combinations
of input conditions. The rationale for tabular expressions is
to let developers define the conditions more easily and to
allow reviewers to directly gain an overview of varied sets
of input conditions. Decision tables are translated into C
essentially as an if/else if/else for the column headers, and
nested in each branch, an if/else if/else for the row headers.
In Figure 5 we marked the different language modules that
are used in the definition of decision tables.

Analyzing Decision Tables. For a two-dimensional deci-
sion table, there are two obvious possible analyses. The
first one is completeness which requires that every behavior
of the system is explicitly modeled and no case is omitted:
this enforces explicitly listing all the possible combinations
of the input conditions in the table. The second analysis
is consistency, which checks whether there are overlapping
input conditions, meaning that several cases are applicable
for a single input value (non-determinism).

Encoding the Analyses as SMT Problems. Given a ta-
ble with n rows (r;) and m columns (c;), we can check its
completeness by checking the satisfiability of the following
formula (if satisfiable, then the table is incomplete).

n,m
=\ (rine)

3,j=1

Similarily, the table is inconsistent if any of the formula is
satisfied for i,k € {1,...,n} or j,l € {1,....,m} with ¢ #
kvij#l

(’I“»L' A Cj) A (Tk A Cl)

3.3 GRAPE

Intelligent buildings allow advanced optimizations like: im-
proving energy consumption efficiency, maximizing the user
comfort, creating special environmental conditions for a cer-
tain process (e.g., growing plants in a green house). In-
teligent buildings let the administrator configure herself the
concrete behavior by providing the system with a set of rules
R, in accordance to which the building has to function. For
example, if the temperature is above 27 °C and somebody is
in the room, then switch on the air conditioner and set the
desired air conditioner required temperature to be 24 °C.

Grape is a DSL built on top of MPS and that reuses parts
of mbeddr C (see Section 4). It describes building, rooms,
sensors and actuators and, finally, the desired set of rules R.
A Cartesian product of all sensors ranges is called a sensor
space S. Physical conditions, as measured by sensors, in
a room at every discrete moment of time can be described
as a point in the sensor space. Grape is integrated within
an experimental demonstrator at ForTISS [5]. In Figure 6
we show how rules for smart buildings can be modeled with
Grape. The analysis of the rules is needed, because the
number of rules can be quite high (e.g. over 20 for just one
room to control illumination) thus making it not trivial to
maintain correctness of the rule system.

Building Rathaus

Predefined parameters:
const ConstComfTemp = 24

Rooms in the building:
Room Office

Sensors: A S
Numerical sensor’SensorTemEjld =

Actuators:
Boolean actuator id: 2

Fules:
Rule CoolwhenHot
1s _activated when:

to true

{7 Expressions T Variables

——-
___________ | Types

[F—

Figure 6: Example of a Grape Model

Analyzing Grape Rules. For a set of rules described in
Grape, we can define completeness and consistency analyses
(similar to those for decision tables). A set of rules R is
complete if and only if for each input from sensors in S the
system "knows the required state” for each actuator A. A set
of rules R is consistent if there is a clearly defined behavior
of the building for each sensor state from S.

Encoding the Analyses as SMT Problems. Eachruler; €
R provides a mapping from a region T' C S, where the con-
dition (a Boolean formula) ¢; : S — {true, false} of the rule
is satisfied to some action a; that will be performed by actu-
ators. An actuator A can be set to values v € def(A). Each
action causes a consequence, setting some of the actuators
to defined values, e.g. set air conditioner (AC) power switch
to on, set air conditioner required temperature to 24 °C. Ev-
ery setting can be represented as a pair (4,v) : v € def(A).
Let us denote a consequence for each action a; as cons(a;)
and define it in this way: an action a; sets an actuator A
to value v if and only if a pair (A,v) € cons(a;). For the
example rule above the consequence would be:

{(AC switch, on), (AC required temp.,24°C)}
For one actuator A completeness of a set of rules R is:
Vs €S — 3r; € R,v €def(A): (A,v) € cons(a;)

, which means that for every point in the sensor space there
is a rule, setting the actuator, accordingly, to some value.
Completeness of a set of rules R means that for every actu-
ator A the set of rules R is complete.

Consistency of two different rules r;,7; € R for an actu-
ator A and (A,vi) € cons(r;),(A,vj) € cons(r;) can be
expressed, in turn, as

(ci ANcj = false) V (vi = vj)

This means that if two rules set the value for the same ac-
tuator, then they either set the actuator to the same value,

or are never fired together in any single point of the sensor
space. Consistency of a set of rules R means that for every
actuator A the set of rules R is consistent. Collecting all
the formulas for each actuator, negating them, and checking
non-satisfiability is a translation of the Grape correctness
problem into the SMT problem.

3.4 Yicesand CVC

Yices and CVC3 are well known SMT solvers developed at
SRI* and New York University®. The main motivation for
integrating both of these tools is the fact that while Yices
has better performance, it also has a proprietary and more
restrictive license. As opposed to this, CVC3 is less per-
formant but has a BSD license which allow us to ship it
with the mbeddr stack which has an EPL license. In the
upper-part of Figure 7 we show a fragment of a Yices file
corresponding to the translation in SMT of the decision ta-
ble from Figure 5. In the lower part of the figure is encoded
in the CVC syntax the smart building from Figure 6. We
can easy remark that the structure of these two files is the
same and the main differences consist in the concrete syn-
tax. In Figure 8 we show a fragment of a ’universal SMT
language’ (similar to SMT-LIB) which is tool independent.

(and (< x 0) (= prev AUTO))) (and (< x 0) (= prev ERROR)))
(and (>= x 0) (= prev MANUAL))) (and (>= x 0) (= prev AUTO)));

CHECKSAT,
COUNTERMODEL;
Legend
C T iExpressions |} Variables | Types

Figure 7: Example of Yices and CVC Files

Task:

CONSTANT ConstComfTemp of type REAL = 24

VARIABLE SensorTemp of type REAL

ASSUME -10 == SensorTemp && SensorTemp <= 35

ASSUME !(ConstComfTemp + 5 < SensorTemp && SensorTemp <= 35)
Check unsat. or find max-sat. model.

Figure 8: Universal SMT: a language to capture
commonalities between Yices and CVC

Observation. The Decision Tables, Grape and SMT lan-
guages make heavy use of expressions. Besides logical or
arithmetics operators the expressions access constants and
typed variables. As we showed above, the domain specific
analyses are based on checking the satisfiability of different

‘http://yices.csl.sri.com
Shttp://www.cs.nyu.edu/acsys/cvc3/

combinations of expressions which contain variables. Imple-
menting the analyses implies simple transformations of the
expressions from the application level DSLs into the Uni-
versal SMT language and then in the language of an SMT
tool.

4. IMPLEMENTATION

The mbeddr implementation of C itself is modularized into
different language modules. One of them comprises primi-
tive types, expressions and referenceable variables. The De-
cision Tables, Grape and Universal SMT language embed
this expressions module defined as part of mbeddr C.

As a consequence of the projectional editor, very few con-
crete syntax concerns have to be considered when modular-
izing and composing languages. This means that that lan-
guage development in MPS closely resembles object-oriented
programming. Essentially all idioms and patterns known
from mainstream OO languages like Java can be used in
language development (details can be found in [9]). So in
the remainder of this section we will just discuss the abstract
syntax.

The expression language module defines an abstract concept
Type and FExpression. The primitive types are subconcepts
of Type and are defined in the same expressions module.
However, more specialized types (such as NumericalSensor)
are defined in the Grape language (Figure 10). This is an
example of language extension. A similar approach is used
with subconcepts of Ezpression (Figure 9). For example, the
decision tables language module defines the DecisionTable
expression, which itself contains further expressions in the
table cells.

Since the expressions language module has originally been
defined for C, it contains a number of expressions that are
specific to C, such as the bitwise operators. By reusing this
language module in the universal SMT language, these ex-
pressions become available there as well, although they do
not make sense in this context. MPS supports constraints
that restrict the use of certain concepts in specific contexts:
we have used one of these constraints to prevent users from
using non-supported C expressions in the universal SMT
language. This is an example of language restriction.

Another category of language elements shared between the
application and analyses DSLs are variables. Each language
implements its own kind of variables (e.g., local variables,
global variables and parameters for Decision Tables, rep-
resenting sensors for Grape, or constant declarations for

| I | l

| UnaryExp | | BinaryExp | | ArgRef | | LocalVarRef | | SensorRef |

Grape

Figure 9: The hierarchy of expressions

Type

int8_t int16_t Boolean Subrange Numerical
Sensor
C [} C, Univ. SMT Univ. SMT Grape

Figure 10: The hierarchy of types

Yices). The scoping mechanism for variables is implemented
with the help of a VariableScopeProvider interface (Figure
11). This interface is responsible for providing the variables
that are defined in a certain scope. Examples of scopes are
C_Function or C_File in C programs, Building in Grape or
SMTFile in the Universal SMT language.

| VariableScopeProvider |
[[I |
| C_File | | C_Function | | Building | | SMTFile |
C C Grape Univ. SMT

Figure 11: The hierarchy of scopes

Finally, there is a fine distinction between the decision ta-
bles and Grape languages. Decision tables are embedded in
regular C programs, they feel like a C extension. The Grape
language is a separate language that embeds C expressions.
According to the classification in [9], both are examples of
language Extension, because they have a dependency on the
base language and they support syntactic mixing. However,
Grape is an example of Extension with Embedding flavor:
it feels like the C expressions are embedded into Grape.

5. RELATED WORK

Edwards and his colleagues [1] present an approach to auto-
matically synthetize domain specific analysis tools. Their
approach is to use properties attached to metaclasses in
order to leverage additional semantics within metamodels.
Thereby they enable generation of configuration files and
plug-ins for extensible analysis and code generation frame-
works. In this paper we described a complementary ap-
proach, namely how modularisation at the language level
can be used to reuse different domain specific analyses in
the context of different DSLs that use that language frag-
ment.

[8] presents a methodology for creating DSLs focused to-
wards verification. The authors capture domain specific
knowledge and make explicit use of it in the verification. Our
approach to reuse languages and analyses can be enriched
with more domain knowledge. There is a lot of knowledge
that belongs to the business domain of the language in which
a sub-language is embedded and that can be used in making
verification more efficient. For example, in the case of rules
for managing smart buildings, the variables representing the
temperature have in practice very narrow domains (typical
temperature in a room is between -10 and 50 degrees centi-
grade with the extremes being highly improbable) and this
limitation can highly speed-up analyses tools.

Merilinna and his colleagues [6] state that verification in the
context of domain specific modeling comprises the follow-
ing aspects: verification of the meta-model which captures
the domain semantics, verification of the generators which
maintain the semantic equivalence between input and out-
put models and verification of textual generators. Our ap-
proach for building modular analyses based on modular sub-
languages lowers the verification efforts since it can be done
only once at a language module level even if that language
module is further embedded in different DSLs.

6. CONCLUSIONS

Domain specific languages are languages dedicated to a cer-
tain domain. They allow domain experts to directly express
their knowledge in a program at the abstraction level of the
problem domain and without any implementation noise. Be-
sides the improvements in usability and productivity, DSLs
open new ways for defining, performing and using formal
analyses. Implementing analyses for each DSL over and over
again can be a tedious work. In this paper we advocate that
many times analyses use only certain sub-languages that are
shared among different DSLs and in such cases language and
analyses can be reused between different DSLs. Thereby,
the analyses implementation efforts for different DSLs can
be avoided. We demonstrate this with the help of two DSLs
that belong to different domains but that are amenable to
the same kind of analyses based on SMT solving.

7. REFERENCES

[1] G. Edwards, Y. Brun, and N. Medvidovic. Automated
analysis and code generation for domain-specific
models. In the joint 10th Working IEEE/IFIP
Conference on Software Architecture and 6th European
Conference on Software Architecture (WICSA/ECSA),
2012.

[2] S. Erdweg, P. G. Giarrusso, and T. Rendel. Language
composition untangled. In Proceedings of Workshop on
Language Descriptions, Tools and Applications
(LDTA), 2012. to appear.

[3] E. Evans. Domain-driven design: tackling complezity
in the heart of software. Addison-Wesley, 2004.

[4] R. Janicki, D. L. Parnas, and J. Zucker. Tabular
representations in relational documents, pages
184-196. Springer-Verlag New York, Inc., 1997.

[5] D. Koss, F. Sellmayr, S. Bauereiss, D. Bytschkow,

P. Gupta, and B. Schétz. Stablishing a smart grid
node architecture and demonstrator in an office
environment using the soa approach. In First
International ICSE Workshop on Software
Engineering Challenges for the Smart Grid. I, 2012.

[6] J. Merilinna and J. Pérssinen. Verification and
validation in the context of domain-specific modelling.
In Proceedings of the 10th Workshop on
Domain-Specific Modeling, DSM ’10, pages 9:1-9:6,
New York, NY, USA, 2010. ACM.

[7] M. Mernik, J. Heering, and A. M. Sloane. When and
how to develop domain-specific languages. ACM
Computing Surveys, 37(4):316-344, 2005.

[8] M. R. Phillip James. Designing domain specific
languages for verification: First steps. In G. S.

Peter Hofner, Annabelle Mclver, editor, ATE-2011 —
Proceedings of the First Workshop on Automated

[10]

Theory Engineering, volume 760 of CEUR Workshop
Proceedings. CEUR-WS.org, 2011.

M. Voelter. Language and ide modularization,
extension and composition with mps. In Summer
School on Generative and Transformational
Techniques in Software Engineering (GTTSE), 2011.
M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb.
mbeddr: an Extensible C-based Programming
Language and IDE for Embedded Systems. In
Proceedings of SPLASH Wavefront 2012, 2012.

