
Using Language Engineering to Lift Languages
and Analyses at the Domain Level

Daniel Ratiu1, Markus Voelter2, Bernd Kolb3, and Bernhard Schaetz1

1 fortiss, ratiu|schaetz@fortiss.org
2 independent/itemis, voelter@acm.org

3 itemis, kolb@itemis.de

Abstract. Developers who use C model checkers have to overcome three
usability challenges: First, it is difficult to express application level prop-
erties as C-level verification conditions, due to the abstraction gap. Sec-
ond, without advanced IDE support, it is difficult to interpret the coun-
terexamples produced by the model checker and understand what went
wrong in terms of application level properties. Third, most C model
checkers support only a subset of C and it is easy for developers to in-
advertently use C constructs outside this subset. In this paper we report
on our preliminary experience with using the MPS language workbench
to integrate the CBMC model checker with a set of domain-specific ex-
tensions of C for developing embedded software. Higher level language
constructs such as components and decision tables makes it easier for end
users to bridge the abstraction gap, to write verification conditions and
to interpret the analysis results. Furthermore, the use of language work-
benches allows the definition of analyzable language subsets, making the
implementation of analyses simpler and their use more predictable.

1 Introduction

Current C model checkers have reached a level of scalability that makes them
useful for real-world projects. However, their adoption in practice is much lower
than it could be. There are three categories of challenges in using C model
checkers [1,2]: First, it is difficult to formalize the to-be-verified application-level
properties at the level of C, so model checkers are used only to verify implicit
C-level properties (e.g., program does no crash, no overflow occurs). However,
this is often not enough for end users. Second, once the result is obtained (at the
abstraction level of C) it is difficult for a user to interpret it at the application
level. Third, due to the complexity of C itself, many model checkers support
only a subset of C and/or are simply buggy when certain C features are used.
All these challenges are due to the gap between the abstractions relevant at the
application level and how they are reflected in programs on the one hand, and
the abstractions of the analysis tool on the other hand.

In this paper we propose a method to simplify the use of C model checkers
that is based on the following three pillars: 1) we describe how various extensions
of C encode higher level abstractions and their (explicit or implicit) properties;



2) we lift the analysis results to the application level, making them more un-
derstandable to the user; and 3) we define language restrictions that reflect
limitations of C model checkers, making them evident to the user. We have im-
plemented this method in mbeddr, an extensible version of C. As examples for
C extensions we use components and decision tables. As analyses examples we
show completeness and consistency of decision tables, and checking of interface
contracts and protocols for components by using the CBMC model checker [3].

2 mbeddr: an Extensible C Language

mbeddr ([4] and http://mbeddr.com) is an extensible set of languages for em-
bedded software development based on C, supporting the incremental, modular
domain-specific extension of C. mbeddr also supports language restriction, in
order to create subsets of existing languages. mbeddr is based on the JetBrains
MPS language workbench (http://jetbrains.com/mps) and exploits its capa-
bilities for language modularization and composition [5].

Out of the box, mbeddr comes with a set of extensions for interfaces and
components, state machines, physical units and decision tables. Some of them
lend themselves to formal analysis: currently we have integrated the Yices SMT
solver (e.g. to verify decision table consistency) and the NuSMV model checker
(for verifying state machines) [4,6,7]. In this paper we illustrate how language
extension mechanisms allow a deep integration of the CBMC model checker.

Fig. 1. Interface definition (left); Use of the interface in client code (right)

Interfaces, Components, Contracts. An interface defines a set of oper-
ations. In addition to the signature, each operation can define preconditions
and postconditions. In addition, a protocol state machine defines the valid call
sequences of the operations in an interface. The left part of Fig. 1 shows an
example interface definition. computeSpeed has two preconditions, one postcon-
dition and a protocol specification that specifies that activate must be called
before calling computeSpeed (when computeSpeed is called, the interface must
be in the Active state, which can be reached by calling activate). Fig. 2 shows
a component that provides the SpeedComputer interface. The right part of Fig. 1
shows an example of client code of the component. Using model checking, we
can verify whether a clients conforms to the preconditions and the protocol, and
whether the implementation of the interface satisfies the postconditions.



Fig. 2. Components implement each function of their provided interfaces. The users of
a component must comply with the preconditions and use protocol defined in the in-
terface. The implementation of each interface functions should comply with the defined
post-conditions. In computeSpeed we show an example of decision tables.

Decision Tables. Decision tables [8] exploit JetBrains MPS’ projectional
editor in order to represent two-level nested if statements as a table (Fig. 2). The
tabular notations makes it easier for developers to write and understand sets of
input conditions. Decision tables suggest two verifications: completeness (check
whether all possible input value combinations are covered), and determinism
(checks that for any given set of input values only one option is valid).

3 Integrating CBMC into mbeddr

Fig. 3 shows the integration of CBMC: from programs written with higher-level
constructs we generate C that includes a set of labels that represent higher-level
verification properties (see next paragraph). The C code is then analyzed with
CBMC and the analysis results are parsed and lifted back to the abstraction
level of the higher-level constructs to make them easy to interpret.

Encoding verification conditions as reachability. We verify pre- and post-
conditions, protocols and decision tables with the help of reachability analysis.
As shown in Fig. 4, we generate labels (the things with the long numbers) to
annotate locations in the code which represent violations of the high level proper-
ties. For example, operation implementations in components have if statements
at the beginning that check the precoditions. The label is placed inside the body
of the if. The body is only executed if the precondition fails. We maintain a

DSL

CBMC
C code and encoding of verification 

conditions as reachability
Raw analysis

results

Lifted analysis results
DSL-level

C-code level

Fig. 3. Approach at a glance: generate C code, run CBMC and lift the raw results.



1 float computeSpeed(int16_t distance, int16_t time, void* ___inst) {
2 PlauzibilizedSpeedComputer* ___ci = ((PlauzibilizedSpeedComputer*)(___inst));
3 switch (___ci->___protocolState) {
4 case 2: { ___ci->___speedComputer_protocolState = 2; break; }
5 default: { protocolViolationForRunnable_2161187783549496741: break; }
6 }
7 if (!(time > 0)) { pre_2161187783549496724__2161187783549496741: ... }
8 float currentSpeed = distance / time;
9 float delta = ...

10 float ___result = decTabExp(delta, ___ci, delta, currentSpeed);
11 if (!(___result > 0)) { post_2161187783549496732__8053687140971342992: ...
12 return ___result;
13 }
14 static float decTabExp(float delta, struct PlauzibilizedSpeedComputer* ___inst,
15 float delta, float currentSpeed) {
16 if (/* no case covered */) { label_dectab_completeness_8053687140971342993: ... }
17 if ((delta < ___inst->field_maxPlausibleDelta) && (___inst->field_initialized) &&
18 (delta < ___inst->field_maxPlausibleDelta) && !(___ci->field_initialized)) {
19 label_dectab_nondeterminism_0_8053687140971342993: ... } ... }

Fig. 4. Generated C code from the implementation of the interface

mapping between each label and the higher-level construct whose property the
label represents. We then use CBMC to check whether the labels can be reached.

Lifting the Result. Running the reachability analysis with CBMC on the
generated C provides a raw analysis result at the abstraction level of C. It spec-
ifies for each label whether it can be reached or not (if it can be reached the
result includes a trace through the C code). This raw result needs to be inter-
preted with respect to the higher-level verification condition that is encoded by
the label. In addition, the counterexample must be related to the program that
includes the higher-level constructs. In Fig. 5 we illustrate examples for lifted
results for checking contracts, protocol of components and the completeness of
decision tables. Lifting the counterexample involves several abstraction steps:

1. Eliminate the generation noise from the C code. Part of the generated C
code represents encodings of higher level concepts. For example, additional
functions are generated that implement decision tables. In these cases, the
corresponding sections of the counterexample are irrelevant in terms of the
higher-level construct; they should not be visible in the lifted result.

Fig. 5. Examples of lifted analyses results. In the case when an analysis fails, a lifted
counterexample at the DSL-level is provided.



2. Interpret the C-level counterexample. Higher-level constructs are encoded in
C through generation with the help of variables or function calls. These en-
codings need to be traced back. For example, the components are initialized
in a function. If this function shows up in a C-level counterexample, it means
that the components were initialized.

3. Restore original names. Since mbeddr supports namespaces, the names of the
high-level program elements are mingled with module names in the C code.
During lifting, we must recover the names of the higher-level abstractions.

Making users aware about the analyzability of their code. Due to the
model construction problem [2], building robust verification tools for large and
complex languages is challenging. In the case when the underlying verification
tool does not support a language feature (intentionally, or because it has bugs),
we inform the user about the non-analyzability of the code by showing a warning
in the IDE. This way, unpleasant surprises are avoided and end user acceptance
can be increased. For example, Fig. 6 (above the line) shows a program frag-
ment that cannot be analyzed with CBMC 4.2 (there is a problem with function
pointers that has since been fixed). The part below the line shows CBMC’s error
message if that code is used as input. Code like this is generated when the com-
ponents in mbeddr are wired dynamically to support runtime polymorphism (via
indirection through function pointers). mbeddr has a configuration option that
forces static wiring of components (by using a language restriction), avoiding the
use of function pointers in the generated C code. This makes the code analyz-
able, but it also limits the flexibility of the user. Making this tradeoff explicit
allows users to make an informed decision regarding flexibility vs. analyzability.

1 struct PlauzibilizedSpeedComputer { struct PlauzibilizedSpeedComputer anSC;
2 char (*activate)(); void initializeComponents() {
3 int (*computeSpeed)(int, int); anSC.activate = &activateImpl;
4 }; anSC.computeSpeed = &computeSpeedImpl;
5 char activateImpl() { return 0; } }
6 int computeSpeedImpl(int d, int t) { int main() {
7 return 0; initializeComponents();
8 } int x = (*(snSC.computeSpeed))(2, 3);... }
9 _________________________________________________________________________________________

10 Assertion failed (base_type_eq(assignment.lhs().type().assignment.rhs().type().ns)),
11 function return_assignment, file symex_function_call.cpp, line 483

Fig. 6. Example of a code fragment that is generated from mbeddr but is not supported
by CBMC (top) and the error message provided by CBMC when this program is
analyzed (bottom). We explicitly inform mbeddr users when they use a high-level
construct that leads to a non-supported language fragment in the generated code. In
this manner, we make the usage of analysis more predictible to the developers.

4 Related Work

In this paper we extend our previous work on using language workbenches to
enable more user-friendly and high-level formal verification [4,6,7] by integrating
a general purpose C-level model checker. There is significant related work on
integrating C model checkers into development environments [9,10]. There is



also already work on generating verification properties from higher level models
[11] and to trace the analyses results at a code level back at the model level [12].

Our work is different mainly in that instead of using models to generate ver-
ification properties, we use language extensions. This way we retain the benefits
of generating verification conditions from higer-level abstractions: deriving the
verification conditions is straight forward, and lifting the counterexample to the
higher abstraction level eliminates a significant amount of noise and thereby im-
prove usability. In addition, we avoid the semantic and tool integration issues
that arise when (verifiable) parts of programs are expressed with different for-
malisms than the regular C code: the extensions have clearly defined semantics
in terms of C, and the tool integration is seamless.

5 Conclusions and Future Work

We see domain-specific languages, language engineering and language work-
benches as key enablers to increase the usability of formal verification. In the
future, we will generate invariants from high level constructs and we will support
to set different entry points in the analysis. A challenge that we foresee is that the
semantics at DSL level (”big step”) might miss many C-level errors (”small-step”)
and make the interpretation of the high-level counterexample unsound.

This work is developed in the LWES project, supported by the German BMBF, FKZ 01/S11014.

References

1. Loer, K., Harrison, M.: Towards Usable and Relevant Model Checking Techniques
for the Analysis of Dependable Interactive Systems. In: ASE. (2002)

2. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Păsăreanu, C., Zheng, H.: Ban-
dera: extracting finite-state models from Java source code. In: ICSE’00. (2000)

3. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS’04. (2004)

4. Voelter, M., Ratiu, D., Schätz, B., Kolb, B.: mbeddr: an extensible c-based pro-
gramming language and ide for embedded systems. In: SPLASH’12. (2012)

5. Voelter, M.: Language and IDE Development, Modularization and Composition
with MPS. In: 4th Summer School on Generative and Transformational Techniques
in Software Engineering (GTTSE 2011). LNCS. Springer (2011)

6. Ratiu, D., Voelter, M., Schaetz, B., Kolb, B.: Language Engineering as Enabler
for Incrementally Defined Formal Analyses. In: FORMSERA’12. (2012)

7. Daniel Ratiu, Markus Voelter, Z.M., Schaetz, B.: Implementing modular domain
specific languages and analyses. In: MoDEVVa’12. (2012)

8. Janicki, R., Parnas, D.L., Zucker, J.: Tabular representations in relational docu-
ments. In: Relational methods in computer science. (1997)

9. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: An eclipse plug-in for model
checking. In: IWPC’04. (2004)

10. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slam and static driver verifier:
Technology transfer of formal methods inside microsoft. In: IFM’04. (2004)

11. Zalila, F., Crégut, X., Pantel, M.: Leveraging formal verification tools for dsml
users: a process modeling case study. In: ISoLA’12. (2012)

12. Combemale, B., Gonnord, L., Rusu, V.: A Generic Tool for Tracing Executions
Back to a DSML’s Operational Semantics. In: ECMFA’11. (2011)


	Using Language Engineering to Lift Languages and Analyses at the Domain Level

