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Abstract. Today’s challenges for language development include language
extension and composition, as well as the use of diverse notations. A
promising approach is projectional editing, a technique to directly manip-
ulate the abstract syntax tree of a program, without relying on parsers. Its
potential lies in the ability to combine diverse notational styles – such as
text, symbols, tables, and graphics – and the support for a wide range of
composition techniques. However, projectional editing is often perceived
as problematic for developers. Expressed drawbacks include the unfa-
miliar editing experience and challenges in the integration with existing
infrastructure. In this paper we investigate the usability of projectional
editors. We systematically identify usability issues resulting from the
architecture. We use JetBrains Meta Programming System (MPS) as a
case study. The case study discusses the concepts that MPS incorporates
to address the identified issues, evaluates effectiveness of these concepts
by surveying professional developers, and reports industrial experiences
from realizing large-scale systems. Our results show that the benefits of
flexible language composition and diverse notations come at the cost of
serious usability issues – which, however, can be effectively mitigated
with facilities that emulate editing experience of parser-based editors.

1 Introduction

As expressed by closeness of mapping in the cognitive dimensions of notations [1],
the degree to which we can effectively express facts in a given domain is heavily
influenced by the alignment of the used language with that domain. This applies
to programming languages, but also to domain-specific languages (DSLs) used in
a wide range of technical and business domains. However, a language must also
use a suitable notation. Imagine mathematics represented as a linear sequence
of characters, without integral symbols, fraction bars or superscripts: it would
be much harder to read, making mathematics as a language less useful – more
hard mental operations [1] would be due to the syntax and not the underlying
semantics. DSLs are often targeted at non-programmers. While the suitability
of a language for its target audience is guided by many criteria (as discussed
in [1]), our experience tells us that that the notation is especially important for
languages targeted at non-programmers. Another important concern in languages
is their composability (approximated by juxtaposability in [1]). Software systems
are often expressed with a set of languages (some used by programmers, some by



other stakeholders), and these languages must be integrated in terms of syntax,
semantics, and their development environments: today, IDEs are essential to
languages since users increasingly rely on IDEs to efficiently edit programs.

Traditionally, languages use either textual or graphical notations. Each kind
of notation comes with its own editor architecture. Textual notations are typically
edited with text buffers, grammars and parsers. The supported notations are
essentially linear sequences of characters and – depending on the grammar class –
in their ability to compose independently developed languages. Graphical nota-
tions use direct manipulation instead of parsers. But purely graphical notations
are only suitable for a limited set of languages, and many real-world languages
require a mix of graphical, textual, tabular and symbolic/mathematical notations.
Projectional editors (ProjEs) support this approach. They generalize the approach
used in graphical editors to arbitrary notations. Editing gestures directly change
the abstract syntax tree (AST). Users see and interact with a rendering of the
AST called a projection. There is no transformation (that is, parsing) from the
concrete syntax to the AST. This allows non-textual notations, as demonstrated
by intentional programming [2,3], which relies on projectional editing. ProjEs also
avoid the problems with compositionality known from grammar-based systems:
ambiguities cannot arise since no grammars are used.

However, ProjEs have traditionally had two problems. First, for notations
that look textual, users expect that the editing behavior resembles classical text
editing as much as possible. Historically, ProjEs have not been good at this;
users had to be aware of the AST when editing programs, leading to usability
problems. For example, when entering 2+3, users first had to enter the + and then
enter the two arguments. Second, ProjEs cannot store programs in the concrete
syntax – otherwise, this syntax would have to be parsed when programs are
loaded into the editor. Instead, programs are stored as a serialized AST, often as
XML. This makes the integration with existing infrastructures, such as version
control systems (VCS) or diff/merge tools, a challenge.

Hypothesis Although ProjEs have been around for a long time (see Section 2.2),
and despite their demonstrated advantages in terms of notational flexibility and
support for language composition and extension, ProjE have not seen much
adoption in practice. We hypothesize that this is mainly because of the drawbacks
regarding editor usability and infrastructure integration discussed above.

Goals, Methods, and Contributions Our goal is to evaluate the usability
of projectional editors. To this end, we first systematically identify and categorize
usability issues arising from the architectural peculiarities of projectional editors.
We then provide a case study of a state-of-the-art projectional editor – the
JetBrains Meta Programming System (MPS). In the case study, we discuss the
techniques used by MPS to mitigate the identified issues, and evaluate their
effectiveness by surveying professional developers. We finally report industrial
experiences from realizing large-scale systems. We contribute: (i) a taxonomy of
usability issues that projectional editors face, (ii) a mapping of concrete mitigation
techniques for the issues, and (iii) empirical data on how professional developers
perceive effectiveness of projectional editing.



Results We identify 14 usability issues related to efficiently entering code (e.g.,
non-linear typing), selection and modification of code (e.g., introducing cross-tree
parentheses), and integration with existing infrastructure (e.g., version control
systems). Half of these issues can be addressed sufficiently, for instance, using code
completion or expression-tree-refactoring support. Others require language- or
notation-specific implementations, or cannot be mitigated conceptually. Results
of the survey show that developers perceive projectional editing as an efficient
technique applicable in every-day work, while the effort of getting used to it
is high. However, the survey also reveals weaknesses, such as the support for
commenting, which is currently not addressed sufficiently in MPS.

2 Background

2.1 Parsing vs. Projection

In parser-based editors (ParEs), users type characters into a text buffer. The
buffer is then parsed to check whether a sequence of characters conforms to a
grammar. The parser builds a parse tree, and ultimately, an abstract syntax tree
(AST), which contains the relevant structure of the program, but omits syntactic
details. Subsequent processing (such as linking, type checks, and transformation)
is based on the AST. Modern IDEs (re-)parse the concrete syntax while the user
edits the code, maintaining an up-to-date AST in the background that reflects the
code in the editor’s text buffer. However, even in this case, this AST is created
by a parser-driven transformation from the source text.

A ProjE does not rely on parsers. As a user edits a program, the AST is mod-
ified directly. A projection engine uses projection rules to create a representation
of the AST with which the user interacts, and which reflects the resulting changes.
No parser-based transformation from concrete to abstract syntax involved here.
Fig. 1 shows the difference. This approach is well-known from graphical editors:
when editing a UML diagram, users do not draw pixels onto a canvas, and
a “pixel parser” then creates the AST. Rather, the editor creates an instance
of uml.Class when a user drops a class onto the canvas. A projection engine
renders the diagram by drawing a rectangle for the class. Programs are stored
using a generic tree persistence format (such as XML). As the user edits the
program, program nodes are created as instances of language concepts. This
approach can be generalized to work with any notation, including textual. A
code-completion menu lets users create instances based on a text string entered
in the editor called the alias. The concepts available for instantiation (and, thus,
the valid text strings/aliases) depend on the language definition. Importantly,
every next text string is recognized as it is entered, so there is never any parsing

Fig. 1. In ParEs (left), users see and modify the concrete syntax. A parser constructs
the AST. In ProjEs, users see and interact with the concrete syntax, but changes directly
affect the AST. The concrete syntax is projected from the changing AST.



of a sequence of text strings. In contrast to ParEs, where disambiguation is
performed by the parser after a (potentially) complete program has been entered,
in ProjEs, disambiguation is performed by the user as he selects a concept from
the code-completion menu. Once a node is created, it is never ambiguous what
it represents, irrespective of its syntax : every node points to its defining concept.
Every program node has a unique ID, and references between program elements
are represented as references to the ID. These references are established during
program editing by directly selecting reference targets from the code-completion
menu; the references are persistent. This is in contrast to ParEs, where a reference
is expressed as a string in the source text, and a separate name resolution phase
resolves the target AST element after the text has been parsed.

2.2 Related Work in Projectional Editing

An early example of a ProjE is the Incremental Programming Environment
(IPE) [4]. It supports the definition of several notations for a language as well
as partial projections, where parts of the AST are not shown. However, IPE
suffers from the problem with editing expressions introduced earlier: to enter
2+3, users first have to enter the + and then fill in the two arguments. This is
tedious and forces users to be aware of the language structure at all times. IPE
also does not address language modularity; it comes with a fixed, C-like language
and does not have a built-in facility for defining new languages. Another early
example is GANDALF [5], which generates a ProjE from a language specification.
Even though [6] does not report on a systematic study, the authors expect the
same usability problems as IPE: “Program editing will be considerably slower
than normal keyboard entry, although actual time spent programming non-
trivial programs should be reduced due to reduced error rates.” The Synthesizer
Generator [7] is also a ProjE. However, at the fine-grained expression level, textual
input and parsing is used. While this improves usability, it destroys many of the
advantages of projectional editing in the first place, because language composition
at the expression level is limited. In fact, extension of expressions is particularly
important to tightly integrate an embedded language with its host language [8].

The Intentional Programming [2,3] project has gained widespread visibility
and has popularized projectional editing; the Intentional Domain Workbench
(IDW) is the contemporary implementation of the approach. IDW supports
diverse notations [9,10]. However, we are not aware of any studies regarding
its usability, and since it is a commercial system, we cannot evaluate it. Our
understanding is that the IDW has not found widespread adoption so far.

Language boxes [11] rely on explicitly delineating the boundaries between
different languages used in a single program (e.g., the user could change the box
with Ctrl-Space). Each language box may use parsing or projection. This way,
textual notations can be edited naturally, solving the usability issues associated
with editing text in a ProjE. However, it is not clear whether fine-grained mixing
between different boxes will work in terms of usability. For example, consider a
projectional editor for a mathematical notation embedded (in its own box) inside
an otherwise textual editor for C code. As part of the mathematical expression,



users would like to use (textual) references to C variables. Providing an integrated
user experience, as well as integrated symbol tables, may not be a trivial problem.
In addition, language boxes address only the usability problem: the approach
still requires a specialized IDE (that knows about the boxes) plus non-concrete
syntax storage (because the boxes must be represented somehow).

Hybrid editors are another alternative of solving the usability problems of Pro-
jEs by on-demand parsing. Unlike in a ParE, the editor content consists of atomic
tokens, not characters. These tokens have normal projectional editors. This makes
it possible to embed complex tokens, such as diagrams or math symbols, and still
edit sequences of such tokens linearly. A prototype is currently being explored by a
team at JetBrains (available at http://jb-proj-demo.appspot.com/index.html). It
is not clear at this point what the trade-offs are regarding language composability,
notational freedom, and usability.

2.3 Case Study: MPS and mbeddr

JetBrains MPS (http://jetbrains.com/mps) is an open-source language work-
bench that uses projectional editing. It is a comprehensive environment for
language engineering, supporting language aspects such as concrete and abstract
syntax, type systems and transformations, as well as IDE aspects, such as syn-
tax highlighting, code-completion, find-usages, diff and merge, refactoring, and
debugging. It also supports language modularization and composition [8].

We have chosen MPS as our case study for three reasons. (1) MPS is currently
the most widely used ProjE. It is used for various projects, including JetBrains
YouTrack, mbeddr (discussed below), computational biology [12], web applications
(http://codeorchestra.com/ide/), requirements engineering [13], and insurance
DSLs. (2) Some of the authors of this paper have significant industry experience
with MPS. (3) MPS is open-source, which fosters replicability of our results.

MPS relies on a meta meta model very similar to EMOF and EMF Ecore [14].
Language concepts (corresponding to meta classes) declare children (single or
lists), references and primitive properties. Concepts can extend other concepts or
implement concept interfaces. Subconcepts can be used where a superconcept
is expected (polymorphism). Programs are represented as instances of concepts,
called nodes. Each concept also defines one or more editors. These are the
projection rules that determine the notation of instance nodes in the program.
The editor also defines intentions, little in-place program transformations that
can be triggered by the user as he edits the program.

mbeddr (http://mbeddr.com) is an extensible set of integrated languages
for embedded software engineering [15], developed with MPS. mbeddr is also
open source. It is primarily used for implementing embedded systems, ranging
from relatively small examples (such as Lego Mindstorm robots) to non-trivial
commercial applications (e.g., a smart meter [16]). mbeddr has been chosen by
Siemens PLM Software (formerly LMS) as the basis of a new controls engineering
tool, which is currently being developed as a set of mbeddr extensions.

The core of mbeddr is an extensible version of C99 and a set of extensions
for embedded software, such as interfaces and components, state machines or



physical units. mbeddr provides multi-paradigm programming for C [17], in which
different abstractions can be used and mixed in the same program. mbeddr also
supports languages for cross-cutting concerns, such as documentation, require-
ments management, and traceability, as well as product-line engineering. Several
formal verification techniques are also directly integrated with the languages.

3 Advantages and Drawbacks of Projectional Editing

We now systematically analyze the usability challenges traditionally associated
with ProjEs. We have identified three categories: efficiently entering (textual) code
(EE), selecting and modifying code (SM), as well as infrastructure integration
(II). These categories reflect anecdotal evidence on usability challenges of ProjEs.
They are also obviously relevant for productively using an editor. For each of the
categories, we identify and explain specific challenges in the following sections.

3.1 Efficiently Entering (Textual) Code

Most grammars used in practice by ParEs are not freely composable, because the
composed grammar may become ambiguous. The details depend on the grammar
class used by the parser, and various disambiguation approaches are used to
address the issue. We mention two examples below; an extensive discussion can be
found in [8]. Formalisms that implement full context-free grammars compose much
better, depending on the modularity of the grammar language [18]. An example
of a grammar formalism that supports only limited composition is ANTLR [19].
In contrast, SDF2 [20] supports full context-free grammars based on a scannerless
generalized LR parser, and composition support is much better: As an example,
[21] demonstrates embedding SQL into Java. Disambiguation is necessary if the
same syntactic form is used in the same location to represent different language
concepts (i.e., must be parsed differently). SDF2 performs disambiguation via
quotations, and SILVER/COPPER [22] uses disambiguation functions. In Pro-
jEs, since no grammars are used, language composition is unlimited (discussed
systematically in [8]). Situations which would lead to an ambiguity in ParEs are
resolved by asking the user to manually disambiguate (EE.1) at the time
of entering the potentially ambiguous code. As an example of composition and
extension, the mbeddr system currently has over 30 modular extensions to C; all
of them can be used in the same program. Many of them are illustrated in [15].

The manual disambiguation also includes references: Targets are picked from
the code-completion menu. This means that users cannot establish references
to non-existing nodes (EE.2), because, if they do not exist yet, the code-
completion menu cannot offer them to the user. In ParEs, a user can just type
i++ even though i has not yet been declared. The user can go back later, and
add a declaration of i before its use. This works because the i in i++ is just a
symbol, and its resolution happens later – it is marked as an error as long as no
declaration for i is in scope. In a ProjE, every reference is an actual pointer to
its target. If the target does not exist, the reference cannot be entered.

Textual projections require the AST to be projected linearly. As discussed
in Section 2.2, ProjEs have traditionally forced the tree structure on the user



even when the notation was linear, i.e., they required structure-aware typing
(EE.3). 2+3 must be entered by first typing the + and then entering its two
children, instead of just linearly typing 2+3.

ParEs extract structure from characters in a text buffer based on a grammar.
Mainstream grammars work on linear sequences of characters. This severely limits
non-linear notations, such as math/symbols (because they are two-dimensional)
or graphics, and limits tabular notations to simple cases where the vertical bar (|)
is used to separate columns and rows (as shown by Jnario (http://jnario.org),
a language for behavior-driven development) or simple, non-recursive fraction
bar-like notations (used for type system rules in [23]). Coordinate grammars [24]
have been proposed to parse two-dimensional mathematics structures. Parsers for
visual notations have been proposed as well; for example, [25] discusses parsing
of hand-inputted shapes on tablet computers based on a formalism called set
grammars. More general discussions on parsing visual languages are provided
in [26] and [27]. However, these grammars use different formalisms and so do
not easily integrate with traditional grammars for linear text. None of these
approaches has found its way into industry-strength language tooling.

Since ProjEs never parse the concrete syntax, they can use notations that are
not parseable, or use two-dimensional layout. Examples include tables, mathe-
matical symbols (fraction bars, superscript or

∑
) or diagrams. This is discussed

for IDW in[9,10] and for MPS/mbeddr in [15]. ProjEs can also mix different
notational styles. For example, tables can contain textual expressions and mathe-
matical symbols (as in mbeddr’s decision tables), and textual programs can embed
graphics. This works because all notational styles are implemented using the same
projectional architecture. In contrast, maintaining an integrated overall model
created with editors that combine parsing and diagram editing is challenging for
a number of technical reasons [28]. These include that parser-based editors use
(qualified) names to represent program node identity, whereas graphical editors
natively use IDs for this purpose or that references in ParEs are created via name
binding, and graphical editors use the unique ID.

This notational flexibility leads to drawbacks. In a ParE, a program can always
be typed exactly the way it looks by typing the sequence of characters one by one.
In a ProjE, it is possible to project program nodes in arbitrary ways, including
tables or mathematical symbols; these cannot just be typed. For example, the

∑
is not available on the keyboard. Thus, it cannot be deduced from just looking
at a program (e.g., in a presentation or a book) how to enter it: What you see
is not what you type (EE.4). More generally, the different notational styles
may require notation-specific editor support (EE.5), each potentially with
their own idiosyncrasies.

Many ProjEs support the definition of multiple editable notations for the
same language structure. A program’s representation can be switched on the
fly by selecting another set of projection rules. This is not practical for ParEs,
since most useful changes in representation also lead to changes in the underlying
structure. As an example, mbeddr supports editing state machines either as text,
or as tables, and a graphical notation is currently being added. Also, in a ProjE,



a program can contain data that is not shown in the projection, and partial
projections or views are possible. This is because the program is stored as the AST,
which contains all data, even when it is not shown. For example, mbeddr stores
requirements traces [29] in programs. In contrast, a ParE must always contain
all data in the concrete syntax, because this is the persistent representation. It is
possible to hide some parts, but this requires specific, language-aware support
in the editor. The Jnario editor can optionally hide the formal aspects of tests.
However, this flexibility means that programs cannot be stored in their concrete
syntax, requiring persisting programs as a generic tree structure. This leads to
challenges with infrastructure integration (discussed below).

3.2 Selecting and Modifying Code (SM)

In ParEs, selection happens in the text buffer: any character, word, line (or
sequences thereof) can be selected and subsequently changed, cut, copied or
pasted. In a ProjE, selection is based on the tree structure (SM.1): nodes,
parent nodes, or siblings in lists can be selected. This also makes it hard to
perform cross-tree modifications (SM.2), i.e., editing structures that are
not aligned with the tree. Consider the expression 1 + 2*3. To change this into
(1+2) * 3, parentheses have to be inserted in places that cross-cut the tree
structure: most ProjEs do not support this, and the expression has to be retyped.
Finally, copy and paste is structure-aware (SM.3), and not just based on
the syntax. If a user wants to paste something in a location where it may fit
syntactically, but the underlying AST uses a different language concept, this will
not work. An example is pasting a C Function into a C++ class, where it needs
to be a Method instead, even though it has essentially the same syntax.

In ParEs, it is sometimes hard to detect semantic associations between program
elements, since such associations are expressed by “geographical proximity”. For
example, comments are typically located above the program element they belong
to. In a ProjE, the relationship between program nodes is typically designed to
be explicit: for example, comments would be children of the element they are
associated to, even though they may still be projected above it. This results
in more robust merging and refactoring, but also means that a ProjE has no
support for free-floating comments (SM.4).

In a ParE, code that is temporarily not needed can be commented out. It is
then ignored by the compiler, type checker, and other IDE services; it is treated
as plain text. When the code is needed again, it can be uncommented: the parser
parses the text and (re-)creates the AST. In a ProjE, commenting is not so easy,
since the commented code must retain its structure so it can be uncommented
later when it is needed again. Hence, dedicated support for commenting
code is required (SM.5).

Whitespace is typically ignored by ParEs, and not explicitly described in
grammars. To be able to pretty-print a program after an automated modification,
an additional pretty-printing specification is typically required. In a ProjE, this
is not required, since the projection rules already contain layout information.



Issue Mitigation Technique used by MPS

E
ffi

ci
en

tl
y

E
n

te
ri

n
g

(T
ex

tu
a

l)
C

o
d

e

EE.1 Requires manual, user-based disambiguation code completion, aliases, context
constraints

EE.2 Cannot establish references to non-existing
nodes

intentions to create missing targets

EE.3 Requires structure-aware typing side transforms, delete actions, smart
references, wrappers, smart delimiters

EE.4 What you see is not what you type –
EE.5 Requires notation-specific editor support – (but editors share common aspects)

S
el

ec
ti

n
g

a
n

d
M

o
d

if
yi

n
g

C
o

d
e SM.1 Selection is based on the tree structure –

SM.2 Hard to perform cross-tree modifications expression tree restructuring
SM.3 Requires structure-aware copy/paste paste handlers
SM.4 Does not support free-floating comments – (partly addressed by metamodel

extension in mbeddr)
SM.5 Requires dedicated support for commenting

code
– (partly addressed by metamodel
extension in mbeddr)

SM.6 Does not support custom layout –

In
fr

a
st

ru
ct

u
re

In
te

g
ra

ti
o

n II.1 Requires tool support for diff/merge node-by-node revert, merge driver,
diff/merge tool using projection rules

II.2 Text-based shell-scripting tools cannot be used – (build system support for generating and
testing models)

II.3 Requires tool support to export/import textual
syntax

copy/paste, parser hooks, generic node
(de-)serialization

Table 1. Mapping of identified usability issues to mitigation techniques

On the flip side, a ProjE does not support custom layout (SM.6) – the
representation is determined completely by the projection rules.

3.3 Infrastructure Integration (II)

Today’s development infrastructure is geared towards text files, and ParEs
integrate seamlessly. The diff/merge facilities of VCS rely on showing the file
contents. This works well for concrete syntax storage, but it does not work for
AST-based storage. Special tool support for diff/merge is needed (II.1).

Tools such as grep assume concrete syntax storage. While ProjEs store names
as strings (so they can be grep’ed), more complex structures are represented
as several nodes and grep’ing for their concrete syntax representation will not
work. Text-based shell scripting tools cannot be used (II.2). A ProjE
will typically support searching on the projected syntax, but the ProjE must be
used for the purpose; generic text-search tools are not enough.

Code written in a ParE can trivially be pasted to and copied from another text-
based application. For a ProjE, this is not necessarily so simple; tool support is
required to export/import textual syntax (II.3). Non-textual notations,
such as tables or symbols, cannot be pasted to a text editor at all.

4 Addressing the Drawbacks in Projectional Editors

In this section, we revisit the problems associated with ProjEs introduced in
Section 3 and illustrate the mechanisms (typeset in italic) used by MPS to address
them. Some of these approaches have already been introduced in [15]. Table 1
summarizes the issues and MPS’ mitigation techniques where applicable.



4.1 Efficiently Entering (Textual) Code (EE)

EE.1 Requires manual, user-based disambiguation Disambiguation in
MPS relies on the user selecting the correct language concept from the code-
completion menu, whose contents are driven by the language structure. Language
concepts define an alias, the string used to pick the concept from the code-
completion menu. By making the alias the same as the leading keyword (e.g. if
for an IfStatement), users can “just type” the code. MPS also supports context
constraints that restrict the locations where concepts can be used based on
arbitrary conditions. For example, mbeddr has different assert keywords, each
with different translation to C. To avoid confusing the user by requiring manual
disambiguation between them, context constraints ensure that each of these
assert statements is available only in disjoint contexts.

EE.2: Cannot establish references to non-existing nodes MPS supports
intentions to create the missing targets in a context-dependent way. For example,
if a user enters a global variable in mbeddr C as int32 global = someName,
where someName does not exist, MPS provides two intentions: one to create a
global variable someName, and one to create a global constant. If a user enters a
local variable (in a function) as int32 local = someName, there are two more
intentions that support creation of a local variable and a function argument.

EE.3: Requires structure-aware typing Consider an expression 2 that
should be changed to 2 + 3. MPS supports side transforms to allow users to
simply type + on the right side of the 2. The transform replaces the 2 with the
+, puts the 2 in the left slot, and then puts the cursor into the right slot so the
user can enter the second argument. Side transforms also reshuffle the tree to
ensure it reflects operator precedence: higher precedence means the operator is
further down in the tree. Precedence is typically specified by a number associated
with each operator. Delete actions are used for a similar effect when elements
are deleted. Pressing Backspace on the 3 in 2 + 3 keeps the 2 +, with an empty
right slot. Pressing Backspace on the + replaces it with its left argument, the 2.

References are also established via code-completion. Consider pressing Ctrl-
Space after the + in 2 + 3. If local variables are in scope, these should be
available in the code-completion menu. However, technically, a VarRef has to be
instantiated first, whose variable slot is then made to point to a variable. This
is tedious, and smart references solve the problem: If a VarRef is allowed in a
given context, the editor first finds the possible targets and puts those targets
into the code-completion menu. Only after the user has selected a target, then
the VarRef is created, and the selected element is put into its variable slot.
This makes the reference object invisible in terms of the editing experience.

Consider a local variable declaration int a; represented by the concept
LocalVarDecl, a subconcept of Statement so it can be used in function bodies.
Users expect to be able to enter a local variable by typing int. However, int
is a Type, and a Type is not legal in a statements list – a statement list expects
instances of Statement – and hence cannot be entered. Wrappers solve this
problem: if a Type is entered in Statement context, the wrapper creates a
LocalVarDecl, puts the Type into its type slot, and moves the cursor into the



name slot. This way, a local variable declaration int a; can be entered by starting
to type the int type, as expected.

Finally, smart delimiters are used to simplify inputting lists that are separated
with a separator symbol (such as the arguments in a function). Typing the
separator (e.g., comma), automatically adds a new node to the list.

EE.4: What you see is not what you type The problem that some concepts
(such as

∑
) cannot be entered just by typing what is projected cannot be solved;

it is a consequence of allowing notations that are not on the keyboard.

EE.5: Requires notation-specific editor support The editors used for
the different notations share common aspects: code completion and intentions
work everywhere, selection is always based on the tree structure, and pressing
Backspace on a program element always deletes it. Still, notation-specific gestures
have to be learned. For instance, the table editors offer special gestures to create
new rows, and graphical editors require the mouse to move elements.

4.2 Selecting and Modifying Code (SM)

SM.1: Selection is based on the tree structure MPS provides no solution
to this problem. Ctrl-Up/Down selects along the tree structure. Shift-Up/Down
selects siblings in child lists. This works independent of the notations. For example,
if a tree is projected as a table, Ctrl-Up will select the current row if that row
represents the parent node, and then Shift-Down selects rows under the current
one if the corresponding nodes are siblings. As this example illustrates, selection
based on the tree structure is not always bad, because programs are highly
structured. This is also illustrated by the fact that some ParEs (such as Eclipse)
support tree-based selection in addition to character-based selection.

SM.2: Hard to perform cross-tree modifications Cross-tree editing, as
in changing 1 + 2*3 to (1+2) * 3 is solved as follows: a separate opening
parenthesis can be entered anywhere in the tree, and its position is remembered
temporarily. Upon entering a corresponding closing parenthesis, the expression tree
is restructured to reflect the new structure indicated by the inserted parentheses.

SM.3: Requires structure-aware copy/paste To address the problem of
not being able to paste an instance of concept A in a program location where an
instance of B is expected, MPS supports paste handlers. These are callbacks that
transform an instance of B to an instance of A if the paste context requires it.

SM.4: No support for free-floating comments Free-floating comments
remain unsupported in MPS. mbeddr supports attaching comments to all program
elements that implement an interface IDocumentable. All top-level mbeddr C
constructs and all statements implement this interface, so essentially everything
except expressions or types can be commented. In addition, mbeddr support a
CommentStatement, which means that procedural code (such as function bodies)
can contain comments that are not associated with any particular element.

SM.5: Requires dedicated support for commenting code Unfortunately,
MPS provides no generic support for (temporarily) commenting out code. mbeddr
uses the following approach: If instances of some concept should be commentable,



a subconcept is defined that implements an interface ICommentedCode. The
subconcept stores the commented code and is marked to suppress errors. It also
overrides the editor styles to use a uniformly gray text color. Using this approach,
it is relatively simple to make statements or module contents commentable.
However, the approach does not work for commenting out parts of expressions,
as in 1 + 2 * (4 /*+7*/).

SM.6: Does not support custom layout MPS does not support user-defined
layout. However, the projection rules can be defined with conditional projections so
that, for example, a statement list that contains only one statement is rendered on
one line (as in if (..) { return x; }) instead of over several lines. Conditional
projections can also be used to implement user-definable preferences, such as
whether the opening curly brace should be on a new line or not. More generally, it
is not clear whether predefined layout is actually a problem: many organizations
mandate formatters that enforce a predefined layout.

4.3 Infrastructure Integration (II)

II.1: Requires tool support for diff/merge The fact that MPS stores its
models in XML files (and not in a database) means that MPS can be integrated
with file-based development infrastructures. More specifically, the VCS integration
involves the following ingredients. First, the editor highlights those parts of
programs that have changed since the last update, shows diffs of these parts, and
supports reverting changes on a node-by-node basis. Second, while diff/merge is
performed by the underlying VCS, MPS ships with a merge driver that makes sure
the merging process respects the idiosyncrasies of MPS’ XML format. Finally, any
diff or merge that requires manual user intervention is performed in an internal
diff/merge tool that uses the projection rules. It works for any notation, and for
textual languages, diff/merge works exactly as in text-based merge tools.

II.2: Text-based shell-scripting tools cannot be used The problem that
text-oriented console tools cannot directly work with MPS models is not solved
generically. However, the most important one, checking and generating models, is
supported. First, MPS models can be generated with an ant task. It transforms
all models in a specified project, enabling subsequent compilation, test, and
packaging of generated artifacts. Second, MPS supports a headless mode for
executing type-system tests. These verify that error messages appear at locations
in programs where, according to the type system rules, they should appear.

II.3: Requires tool support to export/import textual syntax By default,
all textual notations can be copy-pasted to a text editor. The other way, from
text to MPS, requires integrating a parser that creates the MPS tree from the
textual source. MPS provides hooks to integrate such parsers. In mbeddr, we
have developed more utilities for dealing with MPS code in the context of a
text-based collaboration infrastructure. First, a node’s ID can be represented
as a text string, which can then be used by other developers to select the node
in MPS. Second, a node can be copied as XML and then be transported via a
text-based infrastructure. When the XML is pasted into MPS, the original node
is reconstructed. This works independent of the notation.



5 Evaluation

We now evaluate the degree to which MPS’ solutions of the drawbacks of ProjEs
work in practice. The first two dimensions (Efficiently Entering (Textual) Code,
Selecting and Modifying Code) are evaluated in Section 5.1 based on a survey;
the questionnaire and anonymized results are available in [30]. Infrastructure
Integration is discussed based on project experience in Section 5.2.

5.1 Editor Usability

Survey Setup Our survey addresses the following research question: Does MPS
solve known usability issues of projectional editors? To answer it, we designed a
questionnaire that assesses how developers work with MPS and how they perceive
its usability. For each question, developers should estimate their opinion on a
five-point Likert [31] scale, ranging from strongly agree (1) over neutral (3) to
strongly disagree (5). An example statements for developers to rate is: I can work
productively with MPS. To help us understand the rating, we also asked users to
elaborate on their rating in a text field. The survey questions are aligned with
some of Nielsen’s heuristic [32] to make sure the results are relevant for usability.

All participants are professional developers who are using or have used MPS
for non-trivial tasks. We targeted professionals to obtain a controlled sample,
excluding developers who have just experimented with MPS. We contacted each
developer personally via e-mail. The contacted developers included users of
mbeddr as well as other professional MPS users. Our contactees were allowed
to forward the survey to other users. This led to one beginner in our sample,
and we decided to not exclude the data so we can get an impression of the
obstacles beginners face (to be explored further in future work). We piloted
the questionnaire with one developer to rule out any misunderstandings in the
questions: no adaptations were necessary, so we included the results from this
developer in the analysis. To put the answers into context, we also assessed their
general programming experience and how experienced they are with MPS and
its underlying concepts (e.g., DSLs, AST, meta model, model transformation).

We used SurveyGizmo (http://www.surveygizmo.com) to present the question-
naire to developers. Completion took about 25 minutes, and developers were not
compensated for their time. There are no deviations to report.

Participants We received responses from 21 developers, originating primarily
from Europe (mostly Germany, the Netherlands, and Austria) and the US, plus
one response from India. All have at least moderate experience with MPS. Eight
of them have been using it between one and six months; only two just started,
but three have used it for more than two years. The remaining seven developers
report experience between half a year and two years. Most of the participants
use MPS daily (13 developers), or at least multiple times a week (4); three less
than once a week. 43% of developers estimate that they have written between
1,000 and 10,000 lines of code, only few (5%) less than 1,000, and many (29%)
even more than 10,000 lines. Thus, our sample represents sufficient experience to
establish an informed opinion about MPS.



Our participants have significant programming experience. Two thirds report
more than ten years, with only one having less than two years. The experience as
professional developer is also high (more than a third of participants report over
ten years), but slightly lower on average, with five developers being beginners in
professional development. Our most experienced participants were a managing
director and a director of research and development with 24 years of experience.
All but five participants have used a ParE-based IDE before, mostly Eclipse
(62%) and Visual Studio (48%). The participants also have significant experience
with model-driven development (MDD) and language engineering; this is not
necessarily surprising, since MPS is a language engineering tool. For each of the
nine MDD concepts (meta model, AST, grammar, DSL, textual DSL, graphical
DSL, model transformation, M2T, and M2M), the majority reported being very
familiar. The highest familiarity could be seen for meta model, AST, and textual
DSL, while it was lower (but still on a high level) for graphical DSL and model
transformation. Two thirds of all participants have used or designed a DSL before.

Usage Our participants report using MPS in a variety of domains – mostly
automotive and embedded systems (these are the mbeddr users), but also the web,
mobile, insurance, and enterprise resource planning. The majority of participants
uses MPS as a programmer, while half of these also develop language extensions
for mbeddr, indicating some more in-depth experience and language-design
knowledge. One of them reported using it for his Master’s thesis. Only three
participants exclusively develop language extensions.

We now show the answers to how developers perceive various aspects of MPS, as
assessed by the Likert-scale questions, shown in Fig. 2.

Efficiently Entering (Textual) Code (EE) Regarding Efficiency, most
developers agree that they can write code as fast as with a ParE (median: 2;
min/max: 1/5). Only one developer strongly disagrees, but explains that he is a
proficient Emacs user (“Years of investment in Emacs are hard to beat.”). One
user also disagrees, but indicates that this is because he is a novice MPS user.
A second developer who disagrees states that while code entering may not be
that efficient, it is less error-prone, increasing overall efficiency. The remaining
participants state that after getting used to the different style of entering code,
there is no difference in efficiency to ParEs. We also asked about the general
perception of Productivity with MPS. Most developers are positive in this respect
(median: 2; min/max: 1/5). While 28% express a neutral opinion, 40% agree, and
28% even strongly agree. Only one participant expressed strong disagreement.
This participant also faced intensive learning effort and stated that becoming
familiar with the environment was difficult, mainly since all of MPS’ concepts
were completely new to him. In contrast, he strongly agrees that he can write code
as fast as with a ParE, arguing that the code-completion facilities significantly
contribute to the productivity. We conclude that after a learning phase, MPS
lets developers work efficiently and productively.

Selecting and Modifying Code (SM) We asked developers what they think
about producing correct programs with MPS (Correctness) and that they can



produce only valid ASTs (CorrectAST). Most developers agree that these are
supported well with MPS (median for both: 2). Many developers state that
compared to a ParE, MPS does neither provide an advantage nor a disadvantage,
because “the main type of errors are logical errors, which are not influenced by
the IDE.” Those who agree state that the error prevention in MPS is related to
the fact that they can produce only valid ASTs. However, this enforcement of
valid ASTs is also perceived as a drawback, because it reduces flexibility during
programming: “Sometimes though, it would be nice to introduce classes, interfaces
etc. by just using them, and then let the development environment generate the
appropriate types if ordered so by the user via a quickfix”.5

Fig. 2. Overview of Survey Answers.

All participants agree
that they benefit from
the modular language sup-
port of MPS (median: 1,
min/max: 1/2), confirm-
ing one of the key bene-
fits of MPS. One developer
states: “Language composi-
tion is the main strength of
MPS.” Regarding the sup-
port for different notations,
the flexible notations pro-
vide a considerable benefit
for developers (median: 2,
min/max: 1/3), especially
for integrating stakehold-
ers from different domains
(“My DSL users are busi-
ness people, not IT people.
Being able to use mathematical notations for Sum and Product expressions, frac-
tion bars for division, tabular notations for test cases is crucial.”). No problems
were reported with the usability of these non-text editors.

Developers are often not satisfied with the commenting support of MPS,
which is consistent with the shortcomings of the commenting facilities discussed
earlier (Section 4.2). Developers complain about two main issues. The first one
is the problems with (temporarily) commenting code (“You always have to use
some workarounds, like cutting out program fragments ...”). The other one is the
convenience of free text editing6 inside documentation comments (“The editing
of text is not straight forward ...”). We conclude that, except for supporting
comments, MPS addresses the issue of selecting and modifying code quite well.

5 mbeddr C provides such quick fixes (see Section 4, EE.2), but MPS’ Java does not.
This was a Java user.

6 The plugin that supports unstructured free text editing for documentation and
comments is a recent addition to MPS. Since the time of the survey, it has been
improved significantly. It is now used to write the complete mbeddr user guide.



General Usability In addition to the three dimensions, we asked about the
general usability of MPS. In general, developers like the advanced navigation
support of MPS (median: 2; min/max: 1/3). Especially the direct navigation on
the AST is a key advantage. This is especially true for the language engineers,
as one user expresses: “Because of the direct navigation of the AST many fea-
tures (refactoring, quick fixes, etc.) are easy to build.” Participants expressed
mixed feelings about learnability and familiarization. When asked whether MPS
and its facilities are easy to learn and getting used to, more than half of our
participants express a negative or neutral opinion, only few agree or strongly
agree. Interestingly, the results become slightly more negative if we only consider
participants who are both language users and language engineers (median: 4;
min/max: 1/5). Thus, we conjecture that their perception was biased by the
language development facilities in MPS, which require mastery of more advanced
concepts than just using MPS languages to write programs. In fact, in the
comment field, the respective participants reported only about issues related to
language development. Just considering language users yields a more positive
result (median: 3; min/max: 2/4, for both learnability and familiarization). One
language engineer explained his positive attitude: “I have much experience and
knowledge in language development, and given this background, MPS is rather
logically structured. From this point of view, learning how to use MPS to build
a new language [...] is not hard.” Thus, with sufficient experience in language
development, the learnability of MPS seems not to be a problem. Looking at
more inexperienced programmers, we found that one problem of learning MPS is
insufficient documentation, as stated by the same developer: “However, for certain
specialist areas within MPS, there is a lack of good or enough documentation.”

Since documentation is not a conceptual issue, we believe that learnability of
MPS can be considerably improved with sufficient documentation. To address
this, the MPS developers can build on the results of this survey.

Summary In general, the perception of MPS is positive. While the majority
agrees that working with MPS can be productive, developers see some difficulty in
learning (Learnability) and getting used to MPS (Familiarization). The overarching
opinion regarding usability can be summarized in one sentence: MPS takes a
while to get used to, but then its usability is comparable to ParEs. The stated
advantages of ProjE, such as the flexible notations and modular languages, are also
confirmed by our participants. However, there is also room for improvement: the
hotspots expressed by the participants are in line with those problems identified
in Section 3, for which MPS does not yet have satisfactory answers.

Threats to Validity To increase external validity, we ensured that all par-
ticipants have significant prior experience with MDD. Thus, our survey results
and conclusions about usability primarily apply to such developers. However,
we had one beginner in our survey (participants were allowed to forward the
survey to other MPS users). Thus, our results are slightly biased by this beginner,
but at the same time give us valuable insights into the struggles that new MPS
users face. We are currently planning a controlled experiment with students to
further explore how beginners learn MPS. Regarding the results, we can care-



fully generalize beyond MPS based on the assumption that other ProjE can
adopt MPS’ usability-improving techniques, but further studies would improve
the external validity. A threat to internal validity is that the results may be
influenced by specific technical issues with MPS (or bugs), and are unrelated
to the conceptual usability issues, as identified in Section 3. We mitigate this
threat by targeting experienced developers, and cross-checking the experience
with multiple questions in the survey questionnaire. To minimize biasing our
participants, we asked them explicitly for the advantages and disadvangtes of
MPS. By replicating our study, these threats can be reduced further. construct
validity, i.e, to ensure that our survey measures usability correctly, we consulted
the usability heuristics by Nielsen [32] before creating the questionnaire.

5.2 Infrastructure Integration

We now report on industrial experiences to evaluate the effectiveness of MPS
infrastructure-integration support.

Version Control Since 06/2011, a team growing from five to eight people has
been developing mbeddr based on MPS. Starting 07/2013, Siemens PLM has
started developing a commercial tool on top of mbeddr, adding an additional
four people to the team. Some of the mbeddr languages are also used in different
domains, and two more developers are now working on the code base. This leads
to a total of fourteen people. The work is spread over four git repositories7. In
addition, two developers from BMW Car IT (plus two from mbeddr) worked on
an SVN repository to develop an AUTOSAR extension for mbeddr.

In 2011 there were a few problems with merging; some changes just disap-
peared. This has since been fixed, and since 2012 no more problems have occurred
with the VCS integration (git and SVN). Two aspects have to be kept on mind
for it to work. First, diff and merge has to be done within MPS. Since all team
members work with MPS anyway, this is not a problem. Second, if an update
contains changes to languages as well programs that use these languages, users
have to make sure to first merge and rebuild the languages. Otherwise MPS
cannot correctly show the diff of programs written with these languages.

Continuous Integration mbeddr, as well as the projects built with it, use
JetBrains Teamcity as an integration server8. It generates and compiles languages,
runs tests, and packages the mbeddr system as MPS plugins. Even though
Teamcity is also developed by JetBrains, there is no specific integration: it simply
calls ant which in turn use MPS-provided ant tasks for building and testing.

Summary VCS integration and building on the server are the two most
important concerns in terms of infrastructure integration. As discussed above, they
are supported well. Used together with the mbeddr utilities for interoperability
with textual environments discussed in Section 4.3, we conclude that infrastructure
integration is addressed well enough to make MPS usable in practice. The mbeddr-
specific extensions should be integrated directly into MPS, though.
7 including the open source repo at https://github.com/mbeddr/mbeddr.core
8 The CI server is at https://build.mbeddr.com; log in as guest.



6 Remaining Issues and Further Improvement

Automatically Deriving Actions The editor usability facilities have to be
implemented manually for each language. While MPS provides DSLs to do this
efficiently (and to a degree, generically), this is still tedious and error-prone. It
is easy to forget some of the facilities for some language concepts, leading to
an inconsistent user experience. One approach of addressing this problem is to
describe textual-looking languages with a more grammar-like formalism from
which many of the necessary editor facilities can be derived automatically. Both
the MPS and mbeddr teams are currently experimenting with this approach.

Automatic Rebinding Consider a reference to a global variable v. If v is
deleted, references to it break. Consider further that later, a new node named v
is created, possibly a global variable or a function. The old references should now
be bound to the new v. Currently, this is not supported; all reference sites have
to be manually rebound by selecting the target from the code-completion menu.
MPS 3.1 will support automatic rebinding of references based on target names
stored in the (broken) references and existing scoping rules.

Legacy Import One use case of a ProjE is providing state-of-the-art IDE
support and language extension and composition facilities for existing program-
ming languages. To make this possible, the language must be reimplemented in
MPS. The effort to do this is limited; it took the mbeddr team about five person
months to implement C. However, in this scenario, interoperability with textual
C code is necessary. Currently, a parser that creates MPS trees from text has to
be implemented manually. If the aforementioned grammar-like formalisms were
available, the necessary parser could potentially be automatically derived as well.

Command-line Support While MPS supports command-line integration for
building and testing models, it is not possible to simply grep MPS models for
text strings (beyond simple names). This is because programs are not stored in
their concrete syntax notation. To address this problem, a textual representation
of the program could be stored along with the AST-based persistence.

What you see is not what you type We are currently experimenting with
two ideas for entering notations that are not on the keyboard. The first one simply
shows the alias in a tooltip over the respective symbol. The second alternative
uses a palette that contains buttons to enter those special notations.

Generic Commenting As confirmed by the survey, generic support for
commenting (documentation as well as commenting out code) is necessary. Most
likely this requires specific support by MPS’ projectional editor. The MPS and
mbeddr teams are currently discussing various approaches to the problem.

7 Conclusion

We have analyzed the usability of projectional editors, discussed mitigation
techniques, and evaluated them by surveying professional developers. Our results
show that the benefits of better language composition and notational flexibility
are impaired by significant usability issues, but that the majority of those can



be sufficiently mitigated with the facilities provided by MPS and discussed in
this paper. In fact, the surveyed professional developers confirm the effectiveness
of these mitigations in their every-day work, while the learning curve is high,
requiring additional training. Further, our industrial experiences indicate MPS’
usefulness for large-scale development projects. Thus, we believe that projectional
editing can be efficient in projects that benefit from language composition and
diverse syntax – outweighing the remaining usability issues. We believe this
generalization is justified in the sense that MPS establishes a minimum viable set
of techniques for improving editor usability that can be adopted by other ProjEs.

Our results can be used in various ways. The categorization of usability
issues allows us to characterize ProjEs in general. The discussed mitigation
techniques establish a minimal baseline for usability of ProjEs. Our empirical
survey data indicates the cost (training and learning investment) to benefit
(language composition, notational diversity, and potentially fewer errors) ratio,
which can be used to assess the applicability of ProjEs in concrete projects.

Our future work is two-fold. First, we will investigate the remaining usability
issues not currently addressed in MPS. Second, we aim at understanding adoption
challenges, problem solving patterns, and efficiency with editing operations using a
controlled experiment. It will comprise both beginning and professional developers
(subset of survey participants), whose behavior when using a ProjE is compared
to developers relying on a ParE. This experiment will complement our present
work by providing an in-depth behavior analysis.
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