
Safety.Lab: Model-based Domain Specific
Tooling for Safety Argumentation

Daniel Ratiu, Marc Zeller, and Lennart Killian

Siemens Corporate Technology, Munich
name.surname@siemens.com

Abstract. Assurance cases capture the argumentation that a system is
safe by putting together pieces of evidence at different levels of abstrac-
tion and of different nature. Managing the interdependencies between
these artefacts lies at the heart of any safety argument. Keeping the as-
surance case complete and consistent with the system is a manual and
very ressource consuming process. Current tools do not address these
challenges in constructing and maintaining safety arguments. In this pa-
per we present a tooling prototype called Safety.Lab which features rich
and deeply integrated models to describe requirements, hazards list, fault
trees and architecture. We show how Safety.Lab opens opportunities to
automate completeness and consistency checks for safety argumentation.

Keywords: model driven engineering, safety-critical systems, assurance
cases, tooling

1 Introduction

Product based safety argumentation needs a holistic view over the system and
links heterogeneous artefacts from different development stages (requirements
specification, system design, implementation, verification & validation) [16]. In
the current practice, these artefacts are maintained in different heterogeneous
and loosely integrated tools if at all. The content of referenced artefacts from
within the argumentation is opaque and the references are only at a high gran-
ularity level, e.g. entire documents (see Fig. 1-left).

Developing assurance cases is not new, but is still imature in industrial prac-
tice [2]. Building assurance cases is entirely manual and with low tool support.
Checking that the safety argumentation is complete and consistent with the
system model is expensive and mostly a manual process done through reviews.
Moreover, the costs are amplified during the evolution of the system when the
safety argumentation needs to be evolved in order to keep up with the changes.

Model-based engineering promotes the use of models in all development
phases from requirements to code and deployment. This means that adequate
and rich models are used to describe different aspects of the system. Rich mod-
els spanning various abstraction levels of dependable systems allow to precisely
define the interdependancies of the model artefacts on different level concerning
a particular safety feature. Tracing these interdependencies through the model



Tool 3
Documents

Tool 4
Documents

Tool 2
Documents

Tool 1
Documents

Assurance
Case

Modeling Environment

Assurance
Case

Model 1

Model 2

Model 3

Model 3

Today Tomorrow

Fig. 1. Safety argumentation is today (left) coarse granular, based on documents man-
aged by different tools. This limits the automation opportunities in building, quality
assuring and reviewing assurance cases. Model-based safety argumentation (right) puts
together fine granular elements of deep models. This increases the automation and en-
ables advanced consistency checks.

as well as the development process lies at the heart of any safety argument.
Such models ease the development, increase the quality and enable a system-
atic reuse. This opens new possibilities to build and maintain assurance cases
which involve different disciplines and directly reference fine granular model el-
ements (see Fig. 1-right). Furthermore, having a deep integration of artefacts in
a tool, eases the development and verification of assurance cases by increasing
automation for building models and continuously checking their consistency.

However, in industrial practice model-based development is currently only
applied to isolated sub-systems (e.g. model-based testing or software modules).
The overall system development and safety assessment are mainly based on
multiple specification and analysis documents. Our long term goal is to move
away from documents-based development and analysis of safety critical systems
to a model-based world in which semantically rich models are used to describe
the system characteristics in an appropriate manner.

In this paper, we present our experiments to build a model-based tool that
supports development of safety cases and linking them to models developed in
early process phases. Based on these deep models we present a set of automatic
consistency checks between the safety argument structure and the structure of
the models of the developed product.

Language Engineering as Technological Basis: Our work uses language engineer-
ing technologies, which refer to defining, extending and composing languages and
their integrated development environments (IDEs). Language workbenches [3]
are tools that support efficient language engineering. Our implementation relies
on the JetBrains MPS1 language workbench, which, unlike most other language

1 https://www.jetbrains.com/mps/



workbenches, uses projectional editing. Projectional editing makes it possible to
easily combine models defined in different languages and notations [4].

One of the biggest projects developed using this technology is mbeddr [1],
a stack of extensible domain specific languages for model driven engineering
of embedded systems. Siemens is involved in the mbeddr project by building
commercial extensions for controls software development. Our work presented
here is part of our investigations on how can we extend the mbeddr technology
stack to enable deeply integrated safety engineering.

Structure of this paper: In the next section we present our vision for the next
generation of model-based tools for the development of assurance cases for safety
critical systems. Subsequently we describe tooling for a set of safety-domain
specific modeling languages and how are they integrated in order to achieve a
gapless landscape of models. We present how we integrate these languages with
requirements, architectural design, and safety analyses in order to provide a
holistic view over the safety of the system. We conclude the paper with related
work and presenting our plans for future work.

2 Long-term Vision for Safety Argumentation Tooling

2.1 Use of rich and domain specific models

The input for safety analyses are models which capture safety relevant character-
istics of the system. These models are at different abstraction levels and captured
using different notations like text, tables or diagrams. Unfortunately, in practice
these models are captured only implicitly in tools providing weak structuring and
consistency enforcements mechanisms like spreadsheets in MS Excel, ”boxes and
lines” drawn in MS Visio or plain natural language text written in MS Word.
Hence, constructing and maintaining assurance cases are currently manual tasks
which are performed mostly based on documents and with only spare tool sup-
port. The structure of artefacts referenced from assurance cases varies from a
domain to another. For instance, the certification of trains is different from the
certification of cars or medical equipment. Current tools are mostly agnostic with
respect to the business domain. Domain specific structures are encoded with the
help of modeling conventions if at all.

Safety.Lab targets to use domain specific models in order to fulfill the specific
needs of engineers working in specific business units.

2.2 Integration of system design and safety analysis

A lot of safety argumentation relevant information is redundant and replicated
across different views, many times in different tools. Common practice today is
that weak and high-granular traceability links are present between development
artefacts. A deep integration between system design and safety analysis is es-
sential for the development of safety-critical systems because safety conditions



such as hazards and failure modes are often an outcome of unintended system
functionalities and behaviours in a given environment.

The goal of Safety.Lab is to work with deeply integrated models in which
the artefacts are integrated with each other and referenced from the assurance
case. Functional system requirements are used as input in safety assessment and
this lead to a set of hazards and failure modes that the system needs to deal
with. These hazards must be mapped to the design and checked that indeed
they are addressed. Thereby, Safety.Lab aims to minimize redundancies between
artefacts and avoid inconsistencies in the safety argumentation and between the
safety argumentation and the system model.

2.3 Support the construction of assurance cases

Safety assurance documents gather together heterogeneous information from dif-
ferent development stages. A safety case includes the system’s safety concept
which is build in an early stage of the development and is based as input for
further development. During later development stages a variety of evidence is
produced (e.g. test cases, FMEA tables, fault trees). This evidence is used to
support safety arguments which explain that the system is sufficiently safe.

Safety.Lab takes advantage of the deep models and modern IDE techniques
in order to support engineers building the safety cases. Building of safety cases
still remains a manual process but with modern IDE support.

2.4 Support the evolution of assurance cases

Systems are evolving due to refinement and modification during the development
and consequently the assurance cases must also evolve. Thereby, it must be
enforced that changes in the system design lead to proper adaptions in the
safety analyses and assurance cases. Before changes are implemented, we need
to estimate the impact of such changes on the safety of the system. Performing
change impact analysis is currently a manual process and thereby very time-
consuming. Many times the costs are so high that changes are avoided and only
work-arounds are provided.

Safety.Lab aims to take advantage of rich models and their integration in
order to help engineers to keep their models consistent with the assurance case
and assess possible inconsistencies due to changes.

3 Safety.Lab

In this section we, present our tool Safety.Lab as a first step towards realizing
our long-term vision of a fully model-based construction of critical systems in-
cluding their assurance cases. Our tool is based on a deeply integrated set of
languages that address early phases in the development process for safety crit-
ical systems. Our presentation is illustrated with a running example about the
braking function of a car.



System-level functional requirements. Functional requirements represent the in-
put in our process and are documented using a domain specific language (DSL)
for describing requirements. The requirements DSL integrates natural language
text with model fragments [14] (due to the lack of space, we present in this paper
only requirements as prose text and simple meta-data). In Fig. 3 we illustrate
an example high-level functional requirement about the braking function of a
car. The braking function has two sub-functions: manual brakes triggered by the
driver and emergency braking triggered by the onboard-computer in case when
an obstacle is detected to be too close to the car.

Fig. 2. A fragment of a requirements model.

Hazards analysis. The next process step that we support is hazards analysis.
Input for the hazards analysis are the functional requirements. In our example,
from the set of functional requirements about braking we identify two hazards:
unintended braking and braking omission. The set of hazards along with their
attributes (severity, controllability, exposure) are captured using a domain spe-
cific language with tabular notation. The reference to the functional requirement
that is used as basis for the hazards analysis is a first class modeling construct
rather than a trace link.

In Fig. 3 we illustrate how Safety.Lab models a list of hazards. The table field
”BrakingFunctionRequirements” is a first-class reference to the requirements
module which contains the functional requirements of braking function.

Fig. 3. Hazards list for the braking function



High-level safety requirements. Safety requirements are derived based on the
hazards analysis. Each hazard leads to one or more safety requirements which
are captured using an extension of the requirements DSL. This extension allows
each safety requirement to reference the hazard it addresses and contains its
integrity level which is automatically derived (based on ISO26262) based on the
attributes of the corresponding hazard.

The safety requirements for our braking example are illustrated in Fig. 3.
The hazards analysis lead to two safety requirements for avoiding unintended
braking and for preventing accidents caused by missing braking function. These
requirements have ASIL B and D.

Fig. 4. Safety requirements example

(Sub-)system architecture. The high-level architecture is used to structure the
system such that the requirements can be satisfied. During the design phase the
integrated safety analysis helps to find tailored solutions the mitigate threats
originating from the relevant failure modes within the system. Architectural
decisions are thus motivated by the need to address safety requirements. In our
example (Fig. 3), we have two channels to implement the braking functionality -
this is required (cf. ISO26262) by the ASIL D of one of our safety requirements.

Fig. 5. Braking subsystem architecture. This particular architecture is motivated by
the requirements which are directly referenced.



Safety analysis. For example, fault trees are used to analyze possible fault prop-
agation at sub-system level that can lead to a hazard on the system level. The
fault tree represents a view (propagation of faults between different sub-systems)
on the system architecture. In Fig. 6 we illustrate an example of a fault tree for
the ”ommision of braking” hazard.

Fig. 6. Example of propagation of faults accross different subsystems. The subsystems
are directly referenced as sources for the basic events. The top event is dirrectly linked
to one of the hazards.

Safety Case. Goal Structuring Notation (GSN) [7] is a modeling language for
capturing safety arguments. GSN has a diagramatic notation; the safety argu-
ment is structured by a set of individual elements (claims, evidence and contex-
tual information) as well as the relationships between these elements (i.e. how
claims are supported by other claims and by evidences). From the point of view
of Safety.Lab, GSN is another modeling language whose elements reference other
models from the modeling environment. A GSN represents a view over the sys-
tem under development which summarizes information already present in the
product model. This opens the possibility to define advanced consistency checks
for the entire model since the structure of the GSN should be consistent with
the structure of the product models whose elements are referenced from within
the GSN.



Fig. 7. Each element of the GSN dirrectly references elements from the system model.
Thereby, navigating between argumentation and the system model is directly sup-
ported. Furthermore, when the system evolves, we can increase the automation of con-
sistency checks that the argumentation is consistent with the implemented changes.

In Fig. 7 we present an example of a safety argumentation fragment for the
braking function by using a GSN diagram. This safety case is constructed by the
safety engineer manually. Safety.Lab supports deep linking of all needed artefacts
which are referenced by the safety argumentation. Based on the fact that the
GSN directly references the high-level functional requirement and hazards, we



can define consistency checks such as the fact that all identified hazards have
been eliminated or that the fault tree indeed leads to a low enough probability
for a hazard.

4 Related Work

Today, there is a number of tools in research and industry which provide an inte-
gration of model-based system design and safety analysis, such as QuantUM[8],
medini analyze [9] or PREEvison[10]. However, none of the existing commercial
tools offer models for structuring the artefacts and link them with assurance
case models.

Sophia is a conceptual model and tooling, implemented as UML profiles, for
integrating safety analyses with model based systems engineering [13]. Sophia
has substantial overlapping with our work when integrating safety with system-
level models. The Eclipse Safety Framework (ESF) aims at providing a set of
tools based on the Eclipse tooling platform PolarSys for integrating safety tech-
niques within a model-driven engineering process based on the modeling stan-
dards SysML and MARTE. AutoFOCUS3 (AF3) is a model based development
tool which provides models for all phases of the system development from re-
quirements to the low-level design. AF3 integrates the GSN notation and allows
its users to link elements of the GSN with parts of models [15]. Due to the use of
deep models, Safety.Lab has many similarities with Sophia, ESF and AF3. We
aim at a deeper integration of fine granular hazards list, fault trees with require-
ments and architecture and at defining automatic consistency checks between
the system model and the safety case.

Various large research project aim at delivering a tooling environment for the
model-based development of safety-critical systems. For instance, the CHESS
environment the SafeCer tools framework [12], the OPENCOSS platform [11].
Since all these tools are results of research projects only parts of the developed
concepts are actually implemented.

A different approach for the model-based development of assurance cases
is presented in [5]. In this approach, a weaving model is used, which allows
integration between assurance case, design and process models, in order to au-
tomatically generate assurance cases. However, a tool to support this approach
is not presented yet. Furthermore, Safety.Lab is focused on deep integration of
artefacts as basis for advanced consistency checks. Assurance cases are manually
created and linked to other artefacts and not automatically generated.

5 Conclusion and Future Work

Our long term goal is to get a holistic and deeply integrated product model that
allows mechanized reasoning about safety qualities of software intensive systems.
We use models to describe the system across several abstraction layers and to
model the safety aspects of the system. In our vision, the safety arguments mod-
els will put together fine granular model elements from the system. In this way,



the consistency and completeness of safety cases can be checked automatically
by using the information from within development models.

In the future, we plan to work along three directions. Firstly, to extend
Safety.Lab in the direction of mbeddr and link safety arguments with code mod-
ules or tests. Secondly, we plan to evaluate our tooling with real-world projects
from the Siemens business units. Thirdly, we plan to investigate the use of richer
models (e.g. state machines, contracts) in order to capture the semantics of re-
quirements and of other artefacts.

References

1. Voelter, M., Ratiu, D., Kolb, B., Schaetz B., mbeddr: Instantiating a Language
Workbench in the Embedded Systems Domain, Journal of Automated Software
Engineering, 2013

2. Langari, Z., Maibaum, T. Safety Cases: A Review of Challenges, in International
Workshop on Assurance Cases for Software-intensive Systems, 2013

3. Fowler, M. Language Workbenches: The Killer-App for Domain Specific Languages?,
2005

4. Voelter, M. Language and IDE Modularization and Composition with MPS, in
Generative and Transformational Techniques in Software Engineering IV, 2013

5. Kelly, T., Hawkins, R.D., Habli, I., Kolovos, D., Paige, R.F., Weaving an Assurance
Case from Design: A Model-Based Approach., in 16th IEEE International Sympo-
sium on High Assurance Systems Engineering, 2015

6. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F., Fault Tree Handbook, US
Nuclear Regulatory Commission, 1981

7. Kelly, T., Weaver, R., The goal structuring notationa safety argument notation, in
Workshop on Assurance Cases Dependable Systems and Networks, 2004

8. Beer, A., Kühne, U., Leitner-Fischer, F., Leue, S., Prem, R., Analysis of an Airport
Surveillance Radar using the QuantUM approach, Technical Report, University of
Konstanz, 2012

9. Kath, O., Schreiner, R., Favaro, J., Safety, security, and software reuse: A model-
based approach, in 4th International Workshop in Software Reuse and Safety, 2012

10. Adler, N., Hillenbrand, M., Mueller-Glaser, K.D., Metzker, E., Reichmann, C.,
Graphically notated fault modeling and safety analysis in the context of electric
and electronic architecture development and functional safety, in 23rd IEEE Inter-
national Symposium on Rapid System Prototyping (RSP), 2012

11. OPENCOSS Consortium, Deliverable D3.3, Integrated OPENCOSS platform, 2015
12. SafeCer Consortium, Deliverables D3.1.3, CTF Platform Prototype, 2012
13. Cancila, D., Terrier, F., Belmonte, F., Dubois, H., et. al., SOPHIA: a Modeling

Language for Model-Based Safety Engineering, in 2nd Int.l Workshop On Model
Based Architecting and Construction Of Embedded Systems: ACES-MB, 2009

14. Voelter, M., Tomassetti, F., Requirements as First Class Citizens, in Dagstuhl
Workshop on Model-based Development of Embedded Systems, 2013

15. Voss, S., and Carlan, C., Schaetz, B., Kelly, T., Safety Case Driven Model-Based
Systems Construction, in 2nd International Workshop on Emerging Ideas and
Trends in Engineering of Cyber-Physical Systems, 2013

16. Panesar-Walawege, R.K. and Sabetzadeh, M. and Briand, L. and Coq, T., Char-
acterizing the Chain of Evidence for Software Safety Cases: A Conceptual Model
Based on the IEC 61508 Standard, in Third International Conference on Software
Testing, Verification and Validation, 2010


