Increasing Usability of Spin-based C Code Verification
Using a Harness Definition Language

Leveraging Model-driven Code Checking to Practitioners

Daniel Ratiu
Siemens Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany
daniel.ratiu@siemens.com

ABSTRACT

Due to its capabilities to integrate well with C code, Spin has
been used for C code verification based on environment mod-
els defined in Promela that describe the context, in which the
software under verification is expected to run. In practice
this approach requires an in-depth knowledge of Promela
and the underlying technology. Moreover environment mod-
els tend to be verbose and exhibit heavily intertwined state-
ments of Promela and C code. Thereby, writing and un-
derstanding such hybrid models is difficult and error-prone.
Alleviating this problem we develop a specialized language,
based on Promela, for expressing environment models used
in verification harnesses. Our language harmonizes the use
of Promela and C in a homogeneous way that is suitable for
practitioners. We show how a small number of language con-
cepts is sufficient to define environments for a wide variety
of commonly encountered software components written in
C. The approach is integrated in the development platform
mbeddr, a technology stack for embedded programming and
formal verification developed on top of JetBrains’” MPS.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Model Check-
ing; D.2.5 [Software and its engineering]: Software test-
ing and debugging

Keywords

Spin, domain-specific languages, model checking, testing

1. INTRODUCTION

Formal verification increases the quality of software by en-
abling the engineers to discover subtle bugs. Despite dra-
matic improvements of the verification algorithms and tool-
ing in the last 10 years, software verification tools are re-
garded as expert tools and developers shy away in front of
their (perceived) complexity.

Andreas Ulrich
Siemens Corporate Technology
Otto-Hahn-Ring 6
81739 Munich, Germany
andreas.ulrich@siemens.com

While software verification is conventionally applied on the
source code of the Software Under Verification (SUV), an
alternative approach based on Spin, a highly mature ex-
plicit state model-checker, has been proposed in [11]. In
this scenario, a verification model is not created from the
SUV directly, but from its environment, which the SUV in-
teracts with. Taking advantage of the possibility to embed
C code in Promela, Spin generates a verifier that systemati-
cally explores the states of the environment model and calls
the SUV. A prerequisite of this approach is that calls to the
SUV are atomic, i.e. there are no intermediate states in the
environment model between the call and the return. For
this reason, the approach is best applicable in the context of
unit testing, treating the SUV as a black-box. The approach
is therefore complementary to white-box testing approaches
such as KLEE/LLVM [4] that generate tests from the source
code of the SUV with the purpose of maximising code cov-
erage during test execution.

The environment-driven black-box approach to code check-
ing draws its advantage from the fact that the SUV is called
in the context of its usage — provided that the environment
model faithfully expresses this usage. The engineer has a
full range of possibilities at hand: from a trivial model with
a single state and no constraints on the SUV input data (the
most general model) to a highly elaborated state model with
constraint data sets. This way the engineer can control the
extend to which the SUV is analyzed at runtime.

Deploying Spin for the exploration of the environment model
requires, naturally, the use of Promela as its specification
language. C code developers who are not trained in for-
mal verification find it hard to apply Promela with its spe-
cific verification features for this purpose, rendering this ap-
proach quickly unacceptable in practice. In a long-term pur-
suit, Siemens invests into technologies to make formal veri-
fication techniques usable up to a level that common practi-
tioners can benefit from its potential. The approach outlined
in this paper is based on language engineering technologies
to hide the complexity of using formal methods directly [15,
14]. The entire approach is implemented in mbeddr [19]*, an
integrated development environment (IDE) and open source
stack of domain specific languages on top of C to assist the
development of safety-critical C code.

Lyww.mbeddr . com

1 c_decl { uchar my_array[4], *res; }

2

3 active proctype sort_harness () {

4 byte elem0, eleml, elem2, elem3;

5 select (elem0 : 0 .. 255);

6

7 select (elem3 : 0 .. 255);

8 c_code {

9 my_array [0] = Psort_harness—>elemO0;
10

11 my_array [3] = Psort_harness—>elem3;
12 res = sort(my_array, 4);

13 for(i = 0; i < 3; i++) {

14 if (!(res[i] <= res[i+1])) {

15 uerror (”...”);

16} 11}

1 decls { uchar my_array[4], *res; }
2

3 harness sort {

4

5 nondet_assign (my_array, 0, 255);
6

7

8

9

10

11

12 res = sort (my_array, 4);

13 for(i = 0; i < 3; i++) {

14 assert (res[i] <= res[i+1]);

15

16}

Figure 1: Verification harness definition using Promela (left) and a proposed higher-level DSL (right)

To outline our language engineering approach, consider Fig-
ure 1 that sketches the approach of environment-driven code
checking using a sorting algorithm called sort () as the SUV.
The environment model, called verification harness in the
remainder of the text, sort_harness() is provided as a
Promela model (left-hand side). The model is conceptu-
ally simple. It generates valid input data through a non-
deterministic assignment of values to the array to be sorted
(lines 4-11), calls the sort() function (line 12) and checks
that the array returned is correctly sorted (lines 13-17).
Note the mixed usage of Promela statements and embed-
ded C code statements. The right-hand side illustrates our
proposed domain-specific language (DSL) which hides the
repetitive parts in the Promela model and offers a simple
and direct way to describe the verification harness by blend-
ing the distinction between C code and Promela models.

The work presented enhances the model-driven code check-
ing approach [11] with the following aspects: 1) We define a
small set of concepts of a harness definition language which
are conceptually simple to use, yet powerful enough to de-
scribe a wide variety of verification harnesses; 2) We show
how these constructs are encoded in Promela to derive ex-
ecutable environment models that are further processed by
Spin; 3) We develop an enhanced way to express the witness
to ease their understanding, and 4) We describe mbeddr-spin,
a tool that implements our approach.

The remainder of the paper is organized as follows. In Sec-
tion 2 we describe a set of pragmatic reasons for using Spin
for verifying C code and the challenges that need to be over-
come. Section 3 provides an overview over MPS and mbeddr,
the technological base used to implement our approach. Sec-
tion 4 presents our verification harness definition language
with a set of language concepts needed for describing har-
nesses at a higher level of abstraction and their translation
into Promela. In Section 5 we describe how our approach
can be instantiated to verify various classes of SUVs that are
often encountered in practice. Section 6 provides a discus-
sion about the approach and results obtained so far, while
Section 7 reviews the known body of related work. Section 8
concludes the paper and sketches directions for future work.

2. SPIN FOR C CODE VERIFICATION

In the following we describe our case for using Spin for C-
level verification, then we describe usability challenges of
using Spin by practitioners and our approach to tackle them.

2.1 Advantages of Spin

Despite big improvements of software verifiers in the last
years [2], there are a set of pragmatic reasons which make the
use of Spin for code verification appealing when compared
with specialized software model checkers.

Language subset for SUVs. To our knowledge, exist-
ing software model checkers work only with a subset of the
C/C++ language. That is, compiler specific extensions, as-
sembler fragments or complex features of C/C++ are not
supported. In contrast, Spin can be used to verify every
code which can be compiled.

Use of libraries. When the SUV uses libraries, software
model checkers require the user to model the observable be-
havior of these libraries. However, precise modeling is many
times impossible (or impracticable) and thereby the analy-
ses results are imprecise. Environment-driven code checking
with Spin does not suffer from this drawback because it gen-
erates a verifier that contains the code of the SUV together
with any libraries used in binary form.

Code that defies verification. There are cornerstone cases
where C code model checkers have difficulties in analyzing
the code, e.g. use of floating-point numbers, deep or com-
plex loops. In many of these cases environment-driven code
checking offers an alternative because regions of the input
space can be exhaustively verified easily, provided the exe-
cution of SUV is fast enough.

Combining testing with model checking. As described
in [8] Spin allows naturally to blend exhaustive model check-
ing with testing, e.g. by generating some explicit input data
randomly in a deliberate manner when exhaustive model
checking over the whole range of input data is not feasible.

Semantic misalignments. There is always a possibility
of semantic misalignments between how the C compiler and
the model checker interpret the code. This is true especially
when the code contains fragments which are not specified
by the C standard. Due to the fact that Spin verifies the
binary, these misalignments cannot happen.

2.2 Usability Challenges

The reasons cited above are our main motivation to enhance
the mbeddr platform with support for environment-driven
code checking using Spin. Nevertheless the approach still
poses challenges in its applicability to practitioners due to
the following reasons:

Modeling the verification harness. Users are required
to have a deep understanding of Promela and its idioms.
Small mistakes in the specification of the environment spans,
for example, a smaller state space than expected reducing
its usefulness. Furthermore, descriptions of relatively simple
environments tend to be verbose. Practitioners simply shy
away in front of this (perceived) complexity.

Lack of IDE support. We are currently not aware of IDEs
which enable the definition of Promela models and their inte-
gration with C code of the system under verification. With-
out IDE support, most of the code checking work must be
done manually, e.g. building the verifier.

Tracking the SUV state. If the SUV has internal state,
it must be tracked in the environment model such that the
observed SUV behavior become deterministic and verifica-
tion results repeatable. Otherwise the user looses control
of the SUV and Spin cannot faithfully decide about a fault
(both false positives and false negatives are possible).

Understanding counterexamples. The error trail gen-
erated by Spin in case of a violated propoerty is—especially
when C code is embedded in the Promela model—verbose
and hard to understand. Additional lifting mechanisms are
therefore required that relate the steps of the error trail to
the language constructs used in the environment model.

2.3 Tackling the Challenges

In order to address these challenges we are specifying envi-
ronment models in a higher-level description language that
deals with the peculiarities of verification harnesses to sup-
port practitioners. The design of this DSL is driven by the
following goals:

G1) Simple syntax for harness definition: The syn-
tax must be simple and based on a few high-level con-
structs to ease learning of a new language. In addition,
the constructs must be also sufficiently expressive such
that a wide variety of C components can be verified.
It should “feel like” C and serve both beginners and
advanced users equally.

G2) Support for understanding the witness: The er-
ror trail generated by Spin shall be enriched with ad-
ditional information about the SUV state such that
comprehension of the counterexample is easier. This
goal implies also that the error trail is provided in a
format which can be parsed and displayed in an easy-
to-understand manner.

3. MPS AND MBEDDR

In the following we give a brief overview of the technological
basis which is provided by the language workbench MPS and
its instantiation for embedded C code development mbeddr.
Afterwards we discuss the integration of Spin into this tech-
nology stack.

3.1 JetBrain’s Meta-Programming System
Our work relies on language engineering technologies, which
refer to defining, extending and composing programming
and domain-specific languages and their integrated devel-
opment environments (IDEs). Language workbenches are
tools that support efficient language engineering. The lan-
guage workbench MPS? supports all aspects of the definition
of DSLs such as abstract syntax, advanced editors, type sys-
tems, code generators and analyzers. It serves as the core
technology for our implementation.

3.2 MBEDDR

The tool mbeddr is an open source technology stack for em-
bedded C code development and verification. It provides in-
cremental, modular and domain-specific extensions of C im-
plemented on top of MPS. Figure 2 shows an overview over
the mbeddr architecture [19]. In a nutshell, mbeddr offers
support for three concerns in the development of embedded
systems: the implementation concern contains engineering
features to support the generation of executable code, the
analysis concern contains features that enable code analyz-
ers and integrated test tools, and the process concern (not
presented in figure for brevety reasons) offers support for the
development process and software lifecycle like definition of
requirements and of product lines.

The work presented in this paper is an extension of mbeddr’s
analysis concern. The analysis concern integrates different
external analyses tools. Besides the integration per se of a
tool, the analysis concern offers DSLs for defining verifica-
tion harnesses which are verification-tool specific. At higher
levels, mbeddr users have the possibility to use the ANSI-
C specification language (ACSL [1]) for defining contracts
on functions — from the ACSL contracts users can gener-
ate C-level assertions or comments that tools like Frama-C
can consume. Another possibility is that the users express
more complex verification conditions through property pat-
terns which are translated into C snippets containing asser-
tions. Different high-level abstractions come with their spe-
cific analyses — e.g. completeness and consistency of decision
tables [16]. The most advanced integration is that of CBMC
[5]. The integration of the other tools are at different stages
of maturity and we are continuously experimenting with dif-
ferent verification technologies to enhance mbeddr’s analysis
capabilities.

2https://www.jetbrains.com/mps/

Usgr to be defined by users
Extensions|
Default Physical Units | Decision Tables Analyses for Domain Specific Constructs
Extensions SMs | Comp. | Unit Tests ACSL | Prop. Patterns |
Core C core language implementation Tools Integration, Harness Def., Evidence Lifting
Platform JetBrains MPS
Backend C compiler, debugger Satdd | I | CBMC | Spin | CPAChecker
ools

Implementation Concern Analysis Concern

Figure 2: Overview over the technology stack of
mbeddr; DSLs for coding (left-hand side), tools and
DSLs for formal analyses (center).

3.3 Integrating Spin into MBEDDR

Language Definition. The work presented in this paper
comprises the definition of DSLs for the design of verifica-
tion harnesses, which starts with the design of the the lan-
guage concepts and their relationships between them (ab-
stract syntax). Figure 3 shows a high-level overview of how
the Promela language implementation and its integration
with other languages are supported in mbeddr. A Prome-
laModule contains entities of type IPromelaModuleContent
which can be, for example, CDecl or ProcType statements.
A CDecl statement contains top level elements of mbeddr’s
IModuleContent which enables the use of any language sup-
ported in mbeddr, C language in our case, to be used inside
a Promela CDecl statement. As an extension of Promela
language, we have defined the high-level harness DSL (Fig-
ure 3-bottom) as described in Section 4.

Generator and Build Process. Deploying features from
the underlying MPS platform, we can generate text such
that it can be passed to compilers or any other tools. The
way forward to implement the Promela model generator
for the verification harness description is to provide first a
model-to-model transformation from the DSL for harness
definition into the Promela language. Then, concrete code
is generated from the Promela model (model-to-text trans-
formation).

Once text is obtained, MPS allows the definition of build
steps which contain the calling of Spin and GCC to compile
the verifier pan. Once the pan executable is built, it is exe-
cuted in a background process. If the verification fails, the
produced error trail is read and the witness is fed back to
mbeddr and displayed in its UI (see Figure 15-right).

mbeddr
IModuleContent Languages @_

A
| ol

PromelaModule Promela

Language

| Global Var. Decl. ||Type Definitions ”

IPromelaModuleContent

| | ProcType |0—-| PromelaStatement |

A

| CDed ||

)
| | |Prome|a\1Stmt || CCode |

HarnessModuleContent | HamessModule Harness Definition
Language
LA | |
| Declarations ||Track$tate| | Hamess |0—| HarnessStatements |

| NondetAssig || RandomAssig | |NondelChoice|| Multistep || Assume || Verif. Cond. |

Figure 3: Overview of the language composition be-
tween mbeddr, Promela and the language for harness
definition.

4. HARNESS DEFINITION LANGUAGE

We develop several high-level concepts of a harness definition
language to enable a convenient definition of a verification
harness. For each concept its rationale and its translation
rules to Promela are described. Our aim is to make the har-
ness look like C code with a minimal number of special con-
structs in order to lower the acceptance hurdle for developers
who are the targeted users of the language. The language
concepts are introduced “by example” to ease readability.

Harness Module Concept. A harness definition describ-
ing the environment, in which the SUV is executed, is real-
ized in the harness module concept. It comprises the follow-
ing four sections: 1) Import of C headers that describe the
interface of the SUV used in the harness logic; 2) Declara-
tion of input data used when calling the SUV; 3) Tracking of
SUV state variables (optional); and 4) Specification of the
harness logic, including assertions.

Figure 4 presents a harness skeleton and its encoding in
Promela. The import section (line 1) contains a header file
that describes the interface of the SUV. A variable declara-
tion of an array of type tpe_t appears in line 3. Such decla-
rations are later transformed to Promela c_decl statements
in the build process. The next line contains the informa-
tion about the tracked variables - this will be automatically
translated into c_tracks with needed information about the
size. All tracked variables are "UnMatched” and they do not
go into the state vector. The harness logic is given in line 6.
It carries a name and a body that contains the scenario of
the call to the SUV which is detailed further below.

imports ”suv.h”

1

2

3 decls { tpe_t[5] arr; }
-4 track state: arr
5
6

harness logic_definition () { /* code x/ }

c_decl {
\#include ”suv.h”
tpe_t [5] arr;

c_track "&arr” "5xsizeof (tpe_t)” ”UnMatched|

active proctype logic_definition () {
/* code x/ skip
}

- .
O O 0O Uik W -

Figure 4: Encoding of the harness module.

Logging Concept. When an assertion fails, Spin prints a
witness which contains the path taken through the Promela
model of the verification harness and the values of its vari-
ables. Promela offers the Printf construct to print addi-
tional information. We leverage the Printf functionality
and generate automatically Printf statements from all con-
structs that assign values nondeterministically or randomly.
Furthermore, we allow users to log information in order to
improve the readability of the witness. In order to recognize
these statements later in the error trail, we use a special for-
mat for the strings printed—all strings denoting key/value

pairs are prefixed with ###. Thereby we obtain a lifted wit-
ness representing a filtered error trail and presenting the rel-
evant information to understand the failure at the harness
level (Figure 15).

decls { int8_t var; }

harness logic_definition () {
//code 1
log witness(var);
//code 2

}

N O Uk W

c_decl { int8_t var; }

active proctype logic_definition () {
//code 1
c_code { Printf("### var=%d\n”, var); }
//code 2

N O U WN

Figure 5: Logging information in the witness.

Non-deterministic Assignment Concept. The statement
nondet_assign assigns non-deterministically a value to a
variable from a given range. The variables can have different
types and the statement is adequately encoded into Promela
depending on the variable type. The non-deterministic as-
signment concept is an extension of the select statement
in Promela by dealing automatically with more data types
(e.g. arrays with a constant size, enumerations) and ranges
(e.g. ranges with discrete values). Furthermore and as dis-
cussed before, a Printf statement is added after each vari-
able assignment to display the chosen value in a witness.

1 decls { char ch; }
2
3 harness p() {
4 // code 1
5 nondet_assign(ch, {’a’, .7, ’'\’});
6 // code 2
7}
1 c¢_decl { char ch; }
2
3 active proctype p() {
4 // code 1
5 byte tmp__ch;
6 if
7 i tmp__ch = ’a’;
8 tmp__ch = ’.7;
19 i tmp__ch = "\\’;
10 fi;
11 c_code {
12 ch = Pp—>tmp__ch;
13 Printf(### ch = %c”, ch);
14 }
15 // code 2
16}

Figure 6: Encoding of nondet_assign where the do-
main is a set of discrete elements of type char. Be-
sides the variable assignment itself, line 13 contains
an automatically inserted Printf statement in the
special witness format.

1 decls {
2 enum EN {
3 FIRST = 10, SECOND = 20, THIRD = 30
4 } en;
5)
6
7 harmness p() {
8 // code 1
9 nondet_assign (en);
10 // code 2
11
1 c_decl {
2 enum EN {
3 FIRST = 10, SECOND = 20, THIRD = 30
4 } en;
5)
6
7 active proctype p() {
8 // code 1
9 int en_idx;
|10 select (en_idx : 0 .. 2);
11 c_code {
12 if (Pp—en_idx = 0) {
13 en = FIRST;
14 Printf(### en = FIRST”);
15
16
17 }
18 // code 2
19 }

Figure 7: Encoding of nondet_assign for variables of
an enumeration type.

Figure 6 illustrates this concept. While the value is non-
deterministically assigned to the given variable, the back-
tracking feature of the model checker ensures that eventually
all possible values are tried. Figure 7 shows the case when
the variable is of an enumeration type, which is translated
to Promela’s select statement.

Random Assignment Concept. In many practical cases
the range of the input values to the SUV is too big to be
explored in an exhaustive manner. To deal with this situa-
tion the random_assign statement in the harness language
assigns a given number of random values to a variable ac-
cording to the range description and using a certain seed
value—an approach presented originally in [8]. The seed
value enables the replay of the verification run. Again, the
random assignment concept is able to deal with variables of
different types, see Figure 8.

Assumption Concept. Frequently the requirements for the
SUV specify assumptions about the environment in form of
constraints between valid inputs to the SUV. A proper envi-
ronment definition thereby should enforce that the required
constraints between inputs hold in order for them to be valid.
For specifying such constraints, we define the assume state-
ment that takes a Boolean expression representing the as-
sumption. The assumption must hold for all subsequent
statements executed. If the assumption does not hold, then
the execution is broken, a backtracking step is performed
and the exploration continues after this reached state. Fig-
ure 9 illustrates the concept and its translation to Promela

1 decls { long v; }
2
3 harness p() {
4 // code 1
5 random_assign (v, [200, 300], 2, 50);
6 // code 2
7
1 c_decl { long var; }
2
3 active proctype p() {
4 // code 1
5 bool rndInit = false;
6 int cnt = 0;
7 if
8 i !lrndInit —
9 rndInit = true;
10 c_code { srand (2); }
11 i1 else —> skip;
112 fi:
13 do
14 :: cnt < 50 —> cnt = cnt + 1;
15 :: break;
16 od;
17 c_code {
18 var = (rand () % (300 — 200)) + 200;
19 Printf("### var = %d”, var);
20 }
21 // code 2
22}

Figure 8: Encoding of random_assign.

as a goto to a label automatically inserted at the end of the
harness code.

harness p()

// code 1
assume (cond) ;
// code 2

ST W~

active proctype p() {
// code 1
if
lcond —> goto end_label;
else —> skip;
fi;

// code 2
end_label: skip;

}

© 00O Uk W~

Figure 9: Encoding of assume. If the assumed condi-
tion does not hold, we jump to the end of the process
and force a backtracking step.

Non-deterministic Choice Concept. A possibility needs
to be provided to select the next behavior of the harness logic
to be executed in a non-deterministic manner. We support
this via the nondet_choice construct which provides multi-
ple guarded behaviors. A choice succeeds if the guard of the
selected behavior is true. When none of the guards evaluate
to true, then a default branch (always present) is executed,
see Figure 10.

1 harness p()

2 {

3 // code 1

4 nondet_choice {

5 choice: guardl —> { /% codel =/ }
6 choice: guard2 —> { /* code2 x/ }
7 default: { /x code3 x/ }

s}

9 // code 2
10 }

1 active proctype p() {

2 // code 1

3 if

4 guardl —> { /% codel x/ }

5 guard2 —> { /* code2 x/ }

6 else —> { /+ code3 %/ }

7 fi;

8 // code 2

9 }

Figure 10: Encoding of nondet_choice.

Multi-Step Verification Concept. When the SUV exhibits
internal state we need multi-step verification. It assumes
that the SUV is called in a loop with different input values
for each call. To facilitate this behavior in the harness defi-
nition, we define the multistep statement that is translated
in Promela to a loop. Additionally the iteration number is
logged to ease understanding a witness (Figure 11).

1 harness p()

2

3 // init

4 multistep (N)

5 // body

6}

7}

1 active proctype p() {

2 // init

3 int __crtStep=0;

4 do

5 i __crtStep < N —> {
6 c_code {

7 Printf("### Iteration = %d\n”,
- 8 __crtStep);
9 }

10 // body

11 }

12 :: else —> break;

13 od;

14}

Figure 11: Encoding of multistep as a loop; also wit-
ness information about the current state is printed
(line 8).

Further Concepts. Besides the concepts listed above, our
harness definition language offers additional features such
as calling the SUV inside the harness, variable assignments,
loops, and assertions. The translation of these concepts into
Promela is straightforward.

Whenever the generator from the harness DSL into Promela
encounters references to C code, or C statements, it auto-
matically wraps them with c_expr or c_code.

S. COVERED SUV CATEGORIES

In this section we present typical categories of SUVs that
are subjected to the environment-driven code verification
approach. Each of the sub-sections from below deals with
one category and demonstrates how the verification harness
can be modelled using the language defined in the previous
section.

5.1 CatlI: Side-Effects Free Function

This category covers the case when the interface of the SUV
is represented by a function which is side-effects free, i.e. its
output depends solely on the provided input data. The set
of input and output parameters is distinct. In this case, the
harness is composed of variable declarations for inputs and
outputs of the SUV and the main harness logic. Typically
the harness logic produces non-deterministically values for
inputs to the SUV and filters the valid ones using the assume
statement. SUV outputs, i.e. return values, are compared
with pre-calculated values in assert statements.

In Figure 12 we present an example of a harness for verifying
the canonize function for path names (similar to the one
presented in [11]) using our DSL. The harness generates all

possible strings of 10 characters which contain ‘., ‘a’ or ‘\’,
but do not end with the suffix “a.”.

:) canonize harness constraints

imports () canonize

decls {
char[10] rawPath;
char[10] canonizedPath:

harness canonize harness {
nondet assign(rawPath, { '.', 'a', '"\\' }):
assume (rawPatch([8] != 'a" || rawPath[3] != "."):
canonize (rawPath, canonizedPath):
assert (isCanonical (canonizedPath));

Figure 12: Example of harness definition for verify-
ing a side-effects free function.

5.2 Cat II: In/Out Parameters

This category describes cases when the SUV interface is rep-
resented by a side-effects free function, of which some param-
eters are used both as inputs and as outputs. In addition to
the harness definition of category I, the harness must track
the variable which is used as an actual in/out parameter in
the call of the function.

Figure 13 presents an example of a harness to verify a sort-
ing algorithm heap_sort that sorts the elements of a given
array “in place”. At first, an array with five elements is non-
deterministically initialized with values between -10 and 10,
then the sorting function is called and the returned array is
checked for correctness of the function. Due to the fact that
the sorting happens in place, the state of the array needs to
be tracked such that, when backtracking is performed, the
search algorithm can continue from the last state stored in

this array. In this example, backtracking happens each time
after an assignment to the array was processed and the SUV
is called again with the next assignment.

:) heapsort_harness

constraints
imports (’ heap sort
decls {
int32[5] array to_sort;
}

track state: array to_sort;

harness heapsort_harness {
nondet assign(array to_sort, [-10..107);:
heap sort(array to_sort, 5);:
for (i ++ in [O..4[) {
assert (array_to_sort[i] <= array_to_sort[i + 1]);

Figure 13: Example of a harness definition for veri-
fying a function with in/out parameters.

5.3 Cat III: State-based Verification

Another category exists when the SUV contains state and
its behavior depends on that state. In this case a multi-step
verification is required. A typical example for this category
are state machines implemented in C. The state machine is
typically implemented through a C function that processes
an input parameter as input event that triggers the execu-
tion of the state machine.

:) statemachine harness constraints

imports (’ statemachine

decls {
nint8 crtEvent;
boolean selfDiagnosisVisited;

}

track state: crtState;
track state: selfDiagnosisVisited;

harnes=s statemachine harness {

init_sm();

maltistep (5) {
nondet_assign(crtEvent, [0..10[):
do_step(crtEvent);
log witness ("crtState", crtState);
if (crtState == SELF DIAGNOSIS) {

selfDiagnosisVisited = true;

if (crtState == RON) {
assert (selfDiagnosisVisited)

Figure 14: Example of a harness definition for veri-
fying a state machine.

| Idx Property | Status | Size | Time
D crclé_harness constraints Spin ok FAIL (1) 0,07s
fuports O c:ci6 001 Assert: l(errorEncountered) || initial.. FAIL 36 007s
decls {
#constant ERROR_BURST_SIZE = 13;
#constant PAYLOAD SIZE = 10; Filter: | | [Regex
wints [PAYLOAD STZE] my message: Ty T
wint16 initialCRC; Idx | LHS | RHS
nintlé modifiedCRC: my message[0] 163
boolean errorEncountered = false; my messagefl] 151
X my messaqe[2] 162
uint8 errorStartPos:
. my message(3] 85
nint8 byteldx; my message[4] 83
nint8 bitInByteIdx: my messaqe[5] 190
} my messaqe/6] 241
my messaqel7] 252
track state: my message: my messaqe[8] 249
track state: errorEncountered; my messagef9] 121
initialCRC 6567
harness harness crclé { E"OIStartPOS 63
- #Choice 1
random assign(my message, [0..255], 0) : 10 times: #Choice 1
initialCRC = crclé (my_message, PAYLORD SIZE); #Choice 1
log witness(initialCRC): #Choice 2
#Choice 2
nondet_assign(errorStartPos, [0..(8 * PAYLOAD SIZE - ERROR_BURST_SIZE - 1)]): #Choice 2
foreach (byte bitIdx : [errorStartPos..(errorStartPos + ERROR BURST SIZE)[) | #Choice 2
nondet choice: - B #Cho![e 2
choice #1 : { :EEO!CE %
byteldx = bitldx / &; #cngﬁg 1
bitInByteldx = 7 - (bitIdx % 8): #Choice 2
my message[byteldx] = my_message[byteldx] * (1 << bitInByteldx):; #Choice 2
errorEncountered = true:
} my messaqge[1] 151
choice #2 : { skip: } my messaqel2] 162
) my message[3] 85
my message[4] 83
: my message[5] 190
my message[6] 241
modifiedCRC = crclé (my_message, PAYLOAD SIZE); my messaqe[7] 253
log witness(modifiedCRC) ; my messaqel8] 56
my messagel9] 185
assert('errorEncountered || initialCRC '= modifiedCRC) : modifiedCRC 6567
¥

Figure 15: Harness definition for checking a CRC-16 algorithm (left) and the presentation of a witness (right).
A double-click on a witness entry selects the corresponding node in the harness definition. Additional logging
of harness variables is taken in the witness and facilitates its understanding.

In Figure 14 an example of a harness for verifying a state
machine is presented. The SUV contains the function for ini-
tialization init_sm() and the do_step() function for step-
ping through the state machine. Because the harness needs
to reason about the correct state after each step, all variables
related to the SUV state should be tracked in the harness.
The multistep statement ensures the continued execution
of the state machine for the given number of steps.

5.4 CatIV: Huge Input Spaces

We often encounter situations when the oracle has a com-
plex structure and cannot be captured through simple as-
sertions or temporal logic patterns. An example system for
this category is an error-detection algorithm like the Cyclic
Redundancy Check (CRC). Such algorithms might exhibit
subtle defects (e.g. when a “bad” polynomial is used) or
their implementation might be simply faulty. Testing CRC
algorithms is difficult because of the huge input space caused
by the multitude of possible messages and the occurrence of
error bursts. In order to tackle the complexity of the input
space, it is sensible to combine random testing with exhaus-
tive verification. Parameters with an input space that is too
large to be systematically explored are subjected to a ran-
dom selection of values, while for the other input parameters
exhaustive verification is applied.

In Figure 15-left a harness is presented for checking an im-

plementation of the CRC-16 algorithm. The payload is ini-
tialized randomly (in our example 10 bytes in the array
my_message) for 10 times. That is, 10 different, randomly
chosen payloads are generated and submitted to the SUV
which calculates the CRC-16 value. Finally, all possible
burst errors up to length 13 are applied on the telegram at
any location inside the payload. A chosen error burst is ei-
ther applied or skipped; see the nondet_choice statement.
The CRC-16 value for the disturbed payload is computed
again. It is expected that the CRC-values for the original
payload and the disturbed one are different under all consid-
ered cases, which is formulated in the corresponding assert
statement. In order to print additional information in the
counterexample we inserted additional log witness state-
ments.

Figure 15-right presents a witness returned by Spin and then
lifted in mbeddr. Due to the special format of the logging
construct, the tool mbeddr-spin can establish the relation
between the witness entry and the corresponding statement
in the harness definition. By double-clicking on an entry of
the witness, the corresponding harness part from which that
witness entry originates will be selected in the editor. The
link between the witness and the editor makes it easier to
understand big witnesses and navigate theough the harness
code.

6. DISCUSSION

The approach introduced in Sections 4 and 5 led to the devel-
opment of the tool mbeddr-spin that extends the feature set
of the mbeddr platform. It targets specifically the develop-
ment of safety-critical embedded C code. In this application
domain, environment-driven code verification has its advan-
tage because it avoids any semantic misinterpretations of
code between the compiler and the model checker that could
render results obtained from direct C code verification use-
less (see Section 2). The mbeddr-spin tool is currently in its
prototype stage where we conduct experiments with C code
functions from a number of industrial projects to evaluate
its usefulness. The evaluation covers (1) the applicability
of the tool and (2) its usability as observed by users. First
results are reported below.

6.1 On Practical Applicability

The use of Spin as the underlying model checker proofs ben-
eficial due to its maturity. Environment models for SUVs
at unit test level tend to describe little behavior and posses
complexity rather in the definition of the input data domain.

Runtime performance of the pan executable is mostly con-
straint by the execution time of a called C function of the
SUV. Performing myriad calls of the SUV quickly exhausts
the available time resources. Thus, the total number of SUV
calls needs to be controlled by the engineer. Consider the
verification of the CRC-16 algorithm (Figure 15). The veri-
fication harness applies 10 different payloads, each 10 bytes
long. The generation of mutated payloads with error bursts
up to length 13 produces (8 * 10 — 13) x 2'® = 548864 mod-
ified payloads. On modern machines Spin is able to cover
this amount of data in a few seconds.

A limitation of the approach applies when verifying state-
based SUVs whose state variables are (partly) not accessible
(e.g. when the SUV wuses a library that has internal state).
In this case the backtracking functionality of Spin cannot be
used because the state of the SUV cannot be backtracked.
One could rely on the availability of a reset function of the
SUV that brings it back to its initial state. This assumption
is frequently met in practice. However a complete SUV reset
as the only possibility for backtracking requires a modified
state exploration strategy inside the model checker: when
backtracking, the model checker re-starts from the initial
state of the model and performs the (shortest) path to reach
the backtracked state, from where it chooses another execu-
tion path of the model and, hence, in the SUV.

6.2 Revisiting design goals G1 and G2

We conducted the work in order to support engineers in
the application of formal methods by hiding them under the
hood of a proper language and IDE. The use of a DSLs stack
such as mbeddr is very helpful in this respect. It allows
the extension of the IDE that the engineer already knows
with additional features. For example, syntax highlighting
and auto-completion are provided out of the box for the
newly designed harness definition language. Such usability
features make the application of a new language easy and
less laborious as well as attractive and motivating to learn.

Moreover, we succeeded in the design of a homogeneous lan-
guage that gets rid of the intertwined usage of Promela and

C code (goal G1). The offered language concepts for harness
definitions are at a higher level of abstraction than Promela
such that a common language integrating both Promela and
C could be defined.

Deploying the analysis aspect of mbeddr we were able to
implement debugging support based on the witness filtered
from a Spin error trail (goal G2). The user only sees en-
tries in the witness that have a direct correspondence to
elements of his harness definition. Details from the under-
lying Promela model are hidden to him. This way, the user
can click on an entry from the witness and the corresponding
harness code is highlighted (see Figure 15).

7. RELATED WORK

The paper [12, 11] introduces the concept of model-driven
code verification using Spin. In this approach, a Promela
model represents the environment, in which the code to be
verified is embedded and which guide the verification pro-
cess. The work in [8] presents a unified framework which
uses Promela both for test harness definition and model
checking. Our work directly builds on these approaches and
extends them by defining a higher-level harness definition
language which captures commonly encountered patterns of
harness definitions. Moreover, we deeply integrate Spin in
the mbeddr development environment and thereby offer the
same IDE for writing C code and and harness definitions
using the new DSL. For this reason the whole approach be-
comes easier to understand and use by software development
practitioners. Furthermore, advanced users can write com-
plex harnesses easier.

The paper [18] presents an approach which uses Spin to
check the C code generated from a high-level DSL for de-
scribing rules. The verification harness is automatically gen-
erated and the verification result and witness is lifted back
at the level of the DSL. Compared to this work our approach
allows the verification of SUVs written in generic C code or
DSLs of mbeddr.

Similarly, the work in [9, 10] introduces a DSL for describing
harnesses for testing. This DSL abstracts away from often
encountered idioms in order to increase the readability of
state-space descriptions. The DSL descriptions allow users
to embed code fragments exercising the system under test
in its host language. Subsequently test scripts are generated
in the target language (Python or Java). Compared to this
work, our focus is clearly on leveraging Promela/Spin capa-
bilities for C code verification; we also offer full IDE support
for editing verifying and interpreting verification results.

There has been already done work for integrating Promela
into common IDEs. For example, the papers [3] and [6]
present Eclipse-based IDEs for Promela. Their integrations
support Promela users with modern editing facilities like
code completion, syntax highlighting, and on-the-fly type
checks. Furthermore, language engineering technologies such
as Xtext are deployed. While the Eclipse IDE integrations
offer modern tool support for building Promela models, none
of these contributions support the capability of integrating
C code in Promela. Furthermore, the editors are essentially
tied to Promela and do not allow users to use higher-level
abstractions for capturing common idioms.

Other body of work deals with Promela extensions. The
paper [17] presents several light-weighted patterns for using
Promela. These patterns are candidates to be lifted at a
higher-level DSL. The work in [7] presents an extension of
Promela with stronger type checks. While the paper [13] ap-
ply language engineering technologies to implement new lan-
guage features which can be seamlessly added to Promela.
mbeddr-spin uses the same kind of approach for leveraging
model-driven code checking with Spin.

8. CONCLUSIONS

The paper presents an approach to improve the usability of
model-driven C code verification using Spin. It proposes a
verification harness definition language that is built on top
of Promela. For this purpose, language engineering tech-
nologies of the language workbench MPS are used. The new
language is introduced by describing the most important
language concepts that wrap Promela and its embedded C
code. The language captures common usage patterns for
defining verification harnesses. The applicability of the lan-
guage is shown by discussing several categories of SUVs that
are often encountered in practice. Compared with the orig-
inal approach of building environment models that relies on
the native usage of Promela and embedded C code, the new
language approach simplifies the harness definition consid-
erably.

Our own future work goes along the following directions.
Firstly, we aim to pilot the approach in industrial projects
within Siemens to gain further insights in the harness def-
inition for a wider range of C implementations and try to
identify further definition patterns and optimized language
encodings in Promela. Secondly, we plan to disseminate this
technology and train the engineers to perform the verifica-
tion themselves as a much enhanced (black-box) unit test.
Thirdly, we want to address the verification of a SUV with
inaccessible internal state. This work is part of a larger effort
to bring formal verification technology closer to practition-
ers. We think that the best ultimate solution is to integrate
functional verification in the build workflow of continuous
integration for software, similarly to the integration of au-
tomated testing.

9. REFERENCES

[1] P. Baudin, P. Cuoq, J.-C. Fillidtre, C. Marché,

B. Monate, Y. Moy, and V. Prevosto. ACSL 1.4 :
ANSI/ISO C specification language. Technical report,
CEA LIST, 2010.

[2] D. Beyer. Reliable and reproducible competition
results with benchexec and witnesses report on
SV-COMP 2016. In International Conference on Tools
and Algorithms for the Construction and Analysis of
Systems (TACAS), 2016.

[3] Z. Brezocnik, B. Vlaovic, and A. Vreze. SpinRCP: the
Eclipse rich client platform integrated development
environment for the Spin model checker. In
International Symposium on Model Checking of
Software (SPIN), 2014.

[4] C. Cadar, D. Dunbar, and D. Engler. KLEE:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In Operating
Systems Design and Implementation (OSDI), 2008.

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

E. M. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In Tools and Algorithms
for the Construction and Analysis of Systems
(TACAS), 2004.

B. de Vos, L. C. L. Kats, and C. Pronk. EpiSpin: An
Eclipse plug-in for Promela/Spin using Spoofax. In
International Workshop on Model Checking Software
(SPIN), 2011.

A. F. Donaldson and S. J. Gay. ETCH: An enhanced
type checking tool for Promela. In Workshop on Model
Checking Software (SPIN). Springer, 2005.

A. Groce and R. Joshi. Random testing and model
checking: Building a common framework for
nondeterministic exploration. In International
Workshop on Dynamic Analysis (WODA), 2008.

A. Groce and J. Pinto. A little language for testing. In
NASA Formal Methods (NFM), 2015.

J. Holmes, A. Groce, J. Pinto, P. Mittal, P. Azimi,
K. Kellar, and J. O’Brien. Tstl: the template scripting
testing language. International Journal on Software
Tools for Technology Transfer, pages 1-22, 2016.

G. Holzmann, R. Joshi, and A. Groce. Model driven
code checking. Automated Software Engineering, 2008.
G. J. Holzmann and R. Joshi. Model-driven software
verification. In Workshop on Model Checking Software
(SPIN). Springer, 2004.

Y. Mali and E. V. Wyk. Building extensible
specifications and implementations of Promela with
AbleP. In Workshop on Model Checking Software
(SPIN), 2011.

Z. Molotnikov, M. Vélter, and D. Ratiu. Automated
Domain-Specific C Verification with mbeddr. In
International Conference on Automatic Software
Engineering (ASE), 2014.

D. Ratiu, M. Voelter, B. Kolb, and B. Schétz. Using
language engineering to lift languages and analyses at
the domain level. In NASA Formal Methods
Symposium (NFM), 2013.

D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb.
Language engineering as enabler for incrementally
defined formal analyses. In Proceedings of the
Workshop on Formal Methods in Software
Engineering: Rigorous and Agile Approaches
(FORMSERA’2012), 2012.

T. C. Ruys. Low-fat recipes for spin. In International
Workshop on SPIN Model Checking and Software
Verification. Springer, 2000.

M. Sulzmann and A. Zechner. Model checking
dsl-generated C source code. In International
Workshop on Model Checking Software (SPIN), 2012.
M. Voelter, D. Ratiu, B. Kolb, and B. Schétz.
mbeddr: instantiating a language workbench in the
embedded software domain. Automated Software
Engineering, 2013.

