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Abstract—Information about variability is expressed in C
through the usage of preprocessor directives which interact in
multiple ways with proper C code, leading to systems difficult
to understand and analyze. Lifting the variability information
into a DSL to explicitly capture the features, relations among
them and to the code, would substantially improve today’s
state of practice. In this paper we present a study which we
performed on 5 large projects (including the Linux kernel) and
almost 30M lines of code on extracting variability information
from C files. Our main result is that by using simple heuristics,
it is possible to interpret a large portion of the variability
information present in large systems. Furthermore, we show
how we extracted variability information from ChibiOS, a real-
time OS available on 14 different core architectures, and how
we lifted that information in mbeddr, a DSL-based technology
stack for embedded programing with explicit support for
variability.

Keywords-software product lines; abstraction lifting; embed-
ded software; projectional editors; reverse engineering.

I. INTRODUCTION

For decades the C language has been the language of choice
in developing embedded systems1. Nevertheless develop-
ment in C is affected by problems due to the presence of
preprocessor directives intermingled inside the C code. The
preprocessor complement fundamentally to the expressive-
ness of the C language permitting conditional compilation,
constant definitions, or basic meta-programming support.
However the preprocessor favors also the presence of bugs
[1] and lead to code that is extremely difficult to understand
and analyze. For example, the ifdef directive permits to
implement variability with the goal of obtaining portability
or implementing product lines but it can be easily abused
leading to situations in which the code is hard to understand
and all possible variants are extremely difficult to analyze
[2].

Mbeddr2 [3] is a technology stack based on language
engineering that defines domain specific extensions of C for
embedded programing – e.g., components, state-machines,
physical units. Mbeddr is built on top of the Meta Program-
ming System (MPS) from JetBrains, which is a projectional

1According to the "Transparent Language Popularity Index" it is still the
most popular programming language in general in January 2013.

2http://mbeddr.com

Figure 1. Variability in C is expressed implicitly through the preprocessor.

language workbench. Since the extensions are based on C,
mbeddr can be easily integrated with existing C code. While
most of the syntax and semantics of C is preserved in
mbeddr some notable features were removed to create a new
language easily analyzable. Notably preprocessor directives
are not supported and for many common usages of the
preprocessor, explicit language constructs are provided.

In mbeddr is possible to represent explicitly software
product line concepts [4] with consequent advantages in
terms of analizability (e.g., if feature models are consistent)
[5] and comprehension. To operate with the existing code
base written in C, an importer is needed to first capture
variability expressed using preprocessor directives (like in
Figure 1) and then to re-express it using the specific con-
structs provided by mbeddr (like in Figure 2). As shown in
Figure 2, in mbeddr, feature models and configurations are
captured through domain specific constructs and the linking
of features to code is explicitly represented by annotations on
the statements. The annotations contain an expression with
references to features which determine if the statement will
be included under a particular configuration. These expres-
sions are called presence conditions. Due to the projectional
editing capabilities of MPS, programs can be displayed as
the entire product line or as individual variants. It means
the developer could visualize all possible statements with
their presence conditions, or only the statements that will be
included when a particular configuration it is used. Importing
the C code and variability in mbeddr means to lift the
level of abstraction from token level (the level at which
the preprocessor operates) to a domain specific level where
variability concepts are expressed as first class citizens.



Figure 2. Variability in mbeddr: on top you see the feature model (left) and
a configuration of that feature model (right). Below there are two projections
of the code: the first one shows all the possible variant, the second one the
variant corresponding to the configuration.

The rest of the paper is organized as follows: we start
describing how variability is represented in C (Sect. II) and
later present an empirical analysis of usages of variability
among large C projects (Sect. III). In Sect. IV we report
about our experience in extracting variability from ChibiOS
source code to mbeddr. Finally we introduce related work
(Sect. V) and draw our conclusions (Sect. VI).

II. HOW VARIABILITY IS EXPRESSED IN C

The preprocessor when it is invoked can receive a set
of parameters, called the initial configuration. The initial
configuration specifies which macros are initially defined
and their initial values. During the preprocessing new macros
can be defined, and the existing ones can change their value
or being undefined. This process is called configuration
processing. Based on the current configuration (the set
of macros being defined and their associated value at a
given moment) declarations and statements are included
or excluded in the code to be compiled. The expressions
determining the inclusion/exclusion of C elements are called
presence conditions. In addition to that, the preprocessor
statements #error and #warning can be used to issue er-
rors and warnings to the user when a particular configuration
is not acceptable or it is deprecated.

Some approaches to extract variability from C (e.g.,
[6]) require to process the initial configuration and rewrite
presence conditions in term of the initial configuration
instead of the current configuration. While this is a sound
solution for analysis, we conjecture that in C important
information is expressed by the combinations of these
two different mechanisms: configuration processing and
presence conditions. The first can be used to specify
derivation rules that determine the values of symbols later
used in presence conditions. Consider the example pre-

sented in Listing 1. First the configuration processing deter-
mines that X_SHOULD_BE_ACTIVATED will be defined only
when the condition defined(FEATURE_A) && (PARAM_B
>0x1010 will have the value true. Subsequently, based on
the fact that X_SHOULD_BE_ACTIVATED is defined or not,
two different statements could be included or excluded (both
of them located inside the function foo). While we could
rewrite the presence conditions to defined(FEATURE_A)
&& (PARAM_B>0x1010) and discard all the configuration
processing we think that this would cause a loss of infor-
mation which could be useful while maintaining the system.
#if defined(FEATURE_A) && (PARAM_B>0x1010)
#define X_SHOULD_BE_ACTIVATED
#endif
void foo()
{
#ifdef X_SHOULD_BE_ACTIVATED
invoke_x_init();

#endif
...

#ifdef X_SHOULD_BE_ACTIVATED
invoke_x_release();

#endif
}

Listing 1. Example of C and preprocessor code containing both
configuration processing and presence conditions

III. EMPIRICAL ANALYSIS OF VARIABILITY IN LARGE C
PROJECTS

To lift the variability information in mbeddr, we need to
understand how is it expressed in large C programs, this
is the goal of the analysis introduced in this section. In
particular we want to investigate if preprocessor directives
in the context of large projects are used in a disciplined way
to represent variability. If that is the case we could identify
usage patterns of the preprocessor that cover the majority
of cases in the practice and exploit them in interpreting
variability.

A. Research questions

Specifically, we aim to answer the following questions:
RQ1) Which are the typical building blocks in presence

conditions? This is important in order to understand which
kind of expressions we need to support in the higher level
configuration language.

RQ2) Which changes (re- #defines and #undefs) are
operated on a defined symbol? Depending on changes upon
defined symbols, defines can be lifted (or not) as constant
configuration values.

RQ3) Are #error and #warning used in practice? If they
are, it could be possible to extract feature model constraints
from them.

B. Analysis approach

In this section we present the general approach we adopted
to answer our research questions. We present the projects we
chose to analyze (III-B1), which information we extracted



from source files and how (III-B2), how we modelled
variation points (III-B3).

1) Projects: To perform our analysis we selected estab-
lished large projects from different domains. They are:
• Apache OpenOffice: it is a suite of six personal produc-

tivity applications. It is ported on Windows, Solaris, Linux,
Macintosh and FreeBSD. It derives from StarOffice, which
was developed since 1984.
• Linux: Linux is an OS kernel developed since 1991. It is
arguably one of the existing projects which is more portable
being available on more than 20 architectures.
• Mozilla: Mozilla is a suite of different projects including

the Firefox browser for desktop and mobile systems and
the Thunderbird e-mail client. It was created by Netscape
in 1998.
• Quake: it is a videogame released during 1996. It runs on

DOS, Macintosh, Sega Saturn, Nintendo 64, Amiga OS.
• VideoLAN: It is a multimedia player, supporting a large
variety of audio and video formats. It has been ported to
Microsoft Windows, Mac OS X, Linux, BeOS, Syllable,
BSD, MorphOS, Solaris and Sharp Zaurus. The first release
is dated 2001.

Some data about the dimension of projects chosen is
reported in Table I. We chose these projects because they
are multi-platform projects, from different domains and they
are written mainly in C or other languages sharing the same
preprocessor. In particular Apache OpenOffice, Mozilla and
VideoLAN contain also Objective-C and C++ files. We
considered more than 73.000 files with a total of more than
2.1 millions of preprocessor statements.

2) Information extraction: We focus on the define
statements because they are used to implement configuration
processing and on the ifdef, ifndef, if, elif and endif
statements because they can be used to express presence
conditions. We excluded from our analysis statements that,
while being of one of the previous types, were not used to
express variability. To do that we built for each file a model
of the information that are relevant to the preprocessor. We
call this model the preprocessor model.

Preprocessor model: A preprocessor model is an or-
dered list of the elements contained in a source file. Possible
elements are: preprocessor statements, blank lines, comment
lines3 and code lines. Preprocessor statements are recognized
from lines not contained in comments which starts with the
‘#’ symbol. They can span across multiple lines when a
line is terminated with the ‘\’ character. Comment lines are
lines containing whitespaces and comments, blank lines are
lines composed only by whitespaces and not included in a
multi-line comment. Finally code lines are lines containing
some code (they can also include comments). Note that

3Comment lines were included in the model because as future work we
aim to associate comments to preprocessor statements (based on adjacency)
and import also them.

while not parsing the C/C++/Objective-C code the parser
have still to be able to handle correctly string and char
literals to recognize comments. Data about the number of
lines contained in each project are reported in Table I.

Parsing preprocessor expressions: In addition to clas-
sify the lines, we parsed the expressions contained in pre-
processor statements and inserted them in the preprocessor
model. In particular we calculated the value of the condi-
tions associated to preprocessor statements ifdef, ifndef,
if and elif and the expressions specified by define
statements. While statements ifdef, ifndef can express
only simple presence conditions (based on the presence
or absence of one single configuration symbol), if and
elif can specify very complex expressions. To parse those
complex expressions we used the grammar presented in
Listing 1 (whitespaces and comments were ignored, includ-
ing the backslash followed by a newline, which is used
inside preprocessort statements to continue on the next line).
Our parser implementation takes in account the precedence
between operators.

〈expression〉 ::= ‘(’ 〈expression〉 ‘)’
| 〈define〉
| 〈flag_value〉
| 〈logical_binary_op〉
| 〈comparison_op〉
| 〈number_literal〉
| 〈char_literal〉
| 〈math_op〉
| 〈bitwise_binary_op〉
| 〈logical_not〉
| 〈bitwise_not〉
| 〈macro_function_call〉

〈define〉 ::= ‘defined’ ‘(’ 〈identifier〉 ‘)’
| ‘defined’ 〈identifier〉

〈flag_value〉 ::= 〈identifier〉
〈identifier〉 ::= +[_a-zA-Z][_a-zA-Z0-9]*
〈logical_binary_op〉 ::= 〈expression〉 (‘&&’|‘||’) 〈expression〉
〈comparison_expression〉 ::= 〈expression〉 (‘<=’|‘>=’|‘>’|‘<’|‘==’|‘!=’) 〈expression〉
〈number_literal〉 ::= ...
〈char_literal〉 ::= ...
〈bitwise_binary_op〉 ::= 〈expression〉 (‘«’|‘»’|‘&’|‘|’) 〈expression〉
〈math_op〉 ::= 〈expression〉 (‘+’|‘-’|‘*’|‘/’|‘%’|‘^’) 〈expression〉
〈logical_not〉 ::= ‘!’ 〈expression〉
〈bitwise_not〉 ::= ‘~’ 〈expression〉
〈macro_function_call〉 ::= 〈identifier〉 ‘(’ (〈expression〉 (‘,’ 〈expression〉)* )? ‘)’

Grammar 1. Grammar used to parse presence conditions. Definitions of
literals are omitted.

Using this grammar we were able to parse correctly a
large majority of the conditions expressed: out of more
than 185K expressions analyzed we could not parse only
three. Expressions that could not be parsed are reported
in Listing 2. The same grammar can be used to parse a
portion of the define statements, when valid expressions
are assigned to symbols. In some cases however define can
assign to symbols arbitrary tokens instead of expressions,
for example complete or incomplete statements. This is
not a problem relavant for feature model and configura-



Description Files Lines
Project Domain Version C C++ Obj-C H Total Blank Comm. Code PP Total
AOO Productivity V. 3.4.1 Linux DEB 158 11,029 51 12,107 23,345 1.2M 1.4M 5.3M 430K 8.2M
Linux OS Vv. 3.6.5 17,448 0 0 14,379 31,827 2.0M 2.2M 9.0M 1.3M 14.5M
Mozilla Web Tag FIREFOX_AURORA_19_BASE 3,118 4,502 180 8,050 15,850 807K 991K 3.7M 326K 5.9M
Quake Gaming Commit bf4ac424ce... 240 0 0 145 385 34K 43K 123K 8K 198K
VideoLAN Multimedia V. 1.3.0 778 255 81 1,311 2,425 97K 110K 426K 45K 678K
Total 21,742 15,786 312 35,992 73,832 4.1M 4.7M 19M 2.1M 29.5M

Table I
SIZE OF THE PROJECTS CONSIDERED. AOO = APACHE OPENOFFICE, H = HEADER, COMM. = COMMENT, PP = PREPROCESSOR.

tion extraction because symbols with syntactic content are
not referred inside presence conditions, which have to be
evaluable expressions. Parsing the values of both object-like
and function-like symbols but excluding define with empty
values, expressions parsable by our grammar ranged from
82% (for VideoLAN) to 95% for Linux.
// Mozilla
#if defined(LARGEFILE64_SOURCE) && - \

_LARGEFILE64_SOURCE - -1 == 1
#if -_LARGEFILE64_SOURCE - -1 == 1
// Apache OpenOffice
#if NFWORK < (NAM$C_MAXRSS + 1)

Listing 2. All the expressions not parsed by our grammar

Preprocessor usages excluded: We used the prepro-
cessor model to identify the preprocessor statements that
were not related to variability. We defined two patterns to
be searched in the model, ignoring blank and comment lines.
In particular we excluded:
• Double inclusion guards protecting modules: we recog-

nized them when a ifndef (or an if with an expression
of type !defined(SYMBOL)) was at the very beginning
of the file, immediately followed by a define, which: i)
defined the same symbol used by the previous statement,
ii) had no value specified. Finally a endif had to be the
last element of the file. When recognizing this pattern we
ignored the three preprocessor statements involved. This
pattern was recognized in most of header files. It is used to
prevent an accidental double inclusion of the same header
file.
• Redefinition guards: we recognized them when a
ifndef (or an if with an expression of type
!defined(SYMBOL)) was followed by a define which
defined the same symbol. This line had to be followed by an
endif. When recognized the first and the third statements
were excluded, while the second was marked as a guarded
redefinition. Redefinition guards are often used to avoid
warnings from the compiler.
3) Calculate conditions of variation points: As we dis-

cussed in Section II if, ifdef and ifndef can be used to
define presence conditions. These directives open constructs
which are terminated by an endif and can contain one
else clause and any number of elif clauses. Each of these
constructs individuate one or more portions of codes, which
can contain other preprocessor statements or C elements. It
is possible to insert other conditional constructs inside these

portions, i.e., it is possible to have annidated conditional con-
structs. The portions of code individuate by the constructs
are classified in three kinds:
• Then block: this is the area between the the if, ifdef or
ifndef opening the construct and the first among elif,
else or the endif which are parts of the same construct
(i.e., we do not consider elif or else or the endif of
annidated constructs).
• Else block: this is the area between the else and the
endif closing the construct.
• Elif block: this is the area between the elif and the next
elif, the else or the endif block of the same construct.

We map each if / ifdef / ifndef construct to a Variation
point and each of its block to a Variation point block.

For each Variation point block a specificCondition and a
complexiveCondition can be calculated. The specificCondi-
tion of a ThenBlock is just obtained from the expression
following the if, ifdef or ifndef statement. In the case
of the ElifBlock it is composed through a logical and:
i) the condition of the corresponding ThenBlock negated,
ii) the condition of all the preceding ElifBlocks negated,
iii) the condition created from the expression following
the specific elif. In the case of ElseBlock it is created
composing through a logical and: i) the condition of the
corresponding ThenBlock negated, ii) the condition of all the
ElifBlocks negated. The complexiveCondition corresponds to
the specificCondition if the block is part of a VariationPoint
which is not annidated, otherwise it corresponds to the com-
plexiveCondition of the block containing the VariationPoint
in logical and with the specificCondition of the block.

C. Results and discussion

In this subsection we present how we addressed each RQ
and the corresponding results (III-C1, III-C2, III-C3). Later
we discuss our findings (III-C4). All the analysis do not
consider the statements excluded for the reasons explained
in Par. III-B2.

1) Addressing RQ1: Presence conditions: To answer this
question we analyzed all the expressions from if, ifdef,
ifndef and elif statements. For each type of expression
(Identifier, NumberLiteral, ComparisonOp., etc.) we counted
in how many of the expressions considered it was used. To
do that we looked at the type of the expression itself and
the type of all its sub-expressions, recursively.



Results: We report frequencies of the different types of
expression in Table II. We can see that, as easily predictable,
identifiers are referred in most of the presence conditions
(84.6%-98.1%). Presence conditions which instead do not
refer to identifiers or macro function calls are constants:
they are always true or false, independently of the current
configuration. Many of the expressions not referring to
identifiers are composed by only one costant, either ‘0’
(false) or ‘1’ (true). An if having as expression ‘0’ cause
the exclusion of all the elements contained in the ThenBlock.
An if having as expression ‘1’ leaves always untouched
the elements in the ThenBlock. The remaining expressions
without identifiers could still have a documentation role,
showing the reasoning process bringing to include or exclude
a particular set of statements. The most common operations
are logical operations (!, &&, ||) which are present in many
presence conditions (between 1/5 to 2/3 of the expressions
considered). Comparison operations (<,>,<=,>=,==,!= are
also relevant as well as number literals. Math (+,-,*,/,%,∧)
and bitwise operations («,»,&,|, ) are very infrequent (they
appear in less than 1% of the presence conditions). Quite
infrequent are also macro function calls which are not used
at all in one of the projects considered and seem to be
marginally relevant only in VideoLAN and Linux (being
contained in slightly more than 1% of all examined presence
conditions). Observing the nature of macro functions used in
presence conditions we noticed that quite frequently they are
just implemented using stringifications4 to compose different
tokens creating a new identifier.

2) Addressing RQ2: Configuration processing: Techni-
cally the value of a macro can vary during the execution
of the preprocessing. A scenario like the one presented in
Listing 3 is therefore possible. In this example two functions
(foo_a and foo_b) have the same presence condition (XYZ
have to be defined) but because of the changes in the
definition of XYZ (initially defined and then undefined)
foo_a will be included while foo_b will be not.
#define XYZ
#ifdef XYZ
void foo_a(){};
#endif
#undef XYZ
#ifdef XYZ
void foo_b(){};
#endif

Listing 3. Example of configuration processing varying the value of a
macro

The designers of Mbedder considered these consequences
of the configuration processing confusing and do not support
it in their variant of C; they instead consider configuration
values to be constant.

While in general preprocessing symbols can be used in
very different ways, we examined how frequently they are

4See http://gcc.gnu.org/onlinedocs/cpp/Stringification.html for an expla-
nation of stringification.

used as simple constants. We found three cases in which
they behave as simple constants. To individuate instances
of these cases we analyzed how a particular symbol was
defined, re-defined or undefined in the scope of a complete
project (because the preprocessor do not implement local
scopes). One condition applies to all these cases: the symbol
considered should be never undefined, because it would
mean to limit its scope, while we are looking for symbols
behaving as constants which are available to the whole
system. The cases considered are:

• Symbols defined once: symbols that are defined just once
in the scope of the project considered.
• Symbols re-defined always to the same value: symbols
that are defined two or more times but they are assigned
always exactly the same expression (possibly the empty
value, meaning that they are defined but they have not an
associated value).
• Symbols re-defined under different conditions: symbols
which are defined two or more times, but every time they
are defined under a particular condition they are defined to
the same value.

To be able to recognize the symbols re-defined under
different conditions we had to be able to calculate the
presence condition under which a particular definition would
be used. Consider the example given in Listing 4. In that
example the same symbol (VAL) could assume different
values. The value 1 is assumed only when the condition
defined(A) && defined(B) is satisfied, the value 2 is
assumed when the condition defined(C) || defined(D)
is satisfied, otherwise the symbol remains undefined. To
calculate the presence condition of a given definition is
not trivial because if, ifdef and ifndef constructs can
be annidated and also the role of elif and else have
to be considered. To this operation we used the technique
presented in Sub-subsection III-B3.

#if defined(A) && defined(B)
#define VAL 1
#endif
#if defined(C) || defined(D)
#define VAL 2
#endif

Listing 4. Example of definitions under different presence conditions

Results: Table III reports some data about the number
of definitions and undefinitions considered and the number
of symbols involved. It is possible to notice that the number
of symbols undefined is many times smaller than the number
of symbols defined. A symbol can be undefined for different
reasons. One reason is to avoid compiler warnings: a symbol
already defined can be undefined immediately before a
statement defining it again. Another reason is to mimic
the concept of scope: by undefining the symbol we are
guaranteed previous definitions preceding the undefinition
will not affect the code following the undefinition.



Expr. Type AOO Linux Mozilla Quake VideoLAN Range
Identifier reference 98.1 95.8 97.1 84.6 93.4 84.6-98.1
Number literal 7.9 7.0 6.5 15.7 10.0 6.5-15.7
Logical op. 66.3 17.9 22.3 28.3 20.9 20.9-66.3
Comparison op. 6.3 3.4 4.0 0.3 3.4 0.3-6.3
Math op. 0.04 0.1 0.1 0 0.3 0-0.3
Bitwise op. 0.01 0.5 0.01 0 0.3 0-0.5
Macro function call 0.01 1.3 0.2 0 1.5 0-1.5
‘0’ 1.8 3.5 2.7 14.6 5.5 1.8-14.6
‘1’ 0.2 0.5 0.2 0.8 0.5 0.2-0.8

Table II
PERCENTAGE OF PRESENCE CONDITIONS CONTAINING THE GIVEN TYPE OF EXPRESSION ACROSS THE DIFFERENT PROJECTS CONSIDERED. FOR THE

EXPRESSIONS 0 AND 1 IT IS INSTEAD THE NUMBER OF EXPRESSIONS CORRESPONDING EXACTLY TO 0 OR 1. LAST COLUMN REPORT THE RANGE (THE
SPACE DETERMINED BY THE MINIMUM AND MAXIMUM VALUES AMONG ALL PROJECTS).

Definitions Undefinitions Errors and warnings
Project Sym Def D1 D2 D3 D4+ Sym Undef Error Warning Perc.
AOO 44K 64K 69.9% 25.4% 1.5% 3.1% 0.6K 1.3K 195 0 0.05%
Linux 656K 787K 90.5% 6.6% 1.4% 1.5% 1.9K 3.3K 735 76 0.07%
Mozilla 51K 70K 83.1% 10.9% 2.0% 4.0% 2.0K 3.6K 694 39 0.26%
Quake 3K 5K 72.5% 23.5% 1.9% 2.0% 9 59 0 0 0%
VideoLAN 13K 15K 92.7% 5.5% 0.7% 1.1% 0.5K 0.6K 31 67 0.26%

Table III
DATA ABOUT USAGE OF PRESENCE CONDITIONS AND USAGE OF ERROR AND WARNING DIRECTIVES. DEFINITIONS/SYM = NUMBER OF SYMBOLS

DEFINED AT LEAST ONCE, DEF = NUMBER OF define, D1 = RATIO OF SYMBOLS DEFINED ONCE, D4+ = RATIO OF SYMBOLS DEFINED FOUR OR MORE
TIMES, UNDEFINITIONS/SYM = NUMBER OF SYMBOLS UNDEFINED AT LEAST ONCE, UNDEF = NUMBER OF undef. PERC. = PERCENTAGE OF ERROR

AND WARNING DIRECTIVES AMONG ALL THE PREPROCESSOR STATEMENTS.

In general preprocessing symbols can be re-defined or
undefined multiple times. For example in the Quake project
the symbol INTERFACE is defined or undefined 46 times,
LOG is defined or undefined 223 times in Mozilla and
pr_fmt is defined or undefined 995 times in Linux. This
happens for a variety of reasons. In some cases different
definitions of the same symbols are contained in header files
which are alternatively included in the compiled system. In
other cases different definitions of the symbols are used in
separated subsystems, so they just happen to have the same
name but they are intended as different values to be used in
different contexts.

In table IV we report the frequencies of the particular
cases described in which we can equiparate symbols to
constants. As we can see in all the projects considered the
percentage of symbols that are covered by these special
cases ranges between 95% and 99%. It means it is feasible
to automatic lift a large portion of the symbols, while a
minority of them have to be manually converted.

3) Addressing RQ3: Error and warning directives: We
simply counted the number of error and warning direc-
tives used.

Results: Data is available in Table III. Only one project
(Quake) do not use them at all. In general we can notice that
error directives are more used than warning directives;
this is true for 3 out of 4 projects, while in the VideoLAN
project warning directive are used twice as much as error
directives. In general these directives constituted between
0.05% and 0.26% of all the preprocessor statements, if they
are used at all.

4) Discussion: From our results we can tell that:

• RQ1 Presence conditions can contain a range set of
different expressions. However mathematical and bitwise
operations are rarely used, as well as macro function calls,
so they have not to be necessarily supported in mbeddr:
the expressions not supported (if found in the projects the
user want to import) can be manually addressed.
• RQ2 Most of preprocessing symbols are used in practice
as global constants, being never redefined to a different
value under the same presence condition and being never
undefined, therefore our simplifications appear to be rea-
sonable and would permit to lift in mbeddr most of the
symbols.
• RQ3 error and warning directives are not necessarily
used by all projects. Therefore in some cases constraints
between features have to be extrapolated from other infor-
mation sources or be manually described.

These results suggest it is feasible to extract and lift
automatically a large portion of the variability information
from C projects, while limited human intervention can be
still needed.

IV. EXPERIENCE WITH IMPORTING CHIBIOS INTO
MBEDDR

ChibiOS is a real-time operating systems supporting 14 core
architectures, different compilers and different platforms. We
chose it for our case study because it is a well written, com-
plex embedded system with very high usage of variability
to support portability. In our case study we used the code of
version 2.5.1. The system is composed from many modules:



Expr. Type AOO Linux Mozilla Quake VideoLAN Range
single definition 69% 90% 80% 72% 90% 69%-90%
re-definition to the same value 23% 6% 7% 24% 2% 2%-24%
definitions under different conditions 2% 2% 9% 2% 4% 2%-9%
total 94.8% 97.9% 96.3% 98.6% 95.1% 94.8%-98.6%

Table IV
SPECIAL CASES IN WHICH MACROS CAN BE LIFTED TO HIGHER LEVEL CONCEPTS.

• boards: it contains specific code for 35 boards and a board
simulator,
• demos: it contains 42 demos for different boards and com-
pilers combinations (some of the demos are then divided
in sub-demos),
• os: the directory containing the core of the system,
• test and testhal: contain source code for testing the system

under different configurations.
• tools: tools which complement ChibiOS.

Given this organization we segmented the global system
in sub-systems. In this section we first discuss how we
extracted a feature model from the OS Kernel module
(IV-A), then how we extracted a configuration for that
feature model from the subsystem containing the code of
a demo for a particular platform (IV-B). Finally we discuss
the experience (IV-C).

A. The OS Kernel module

We start our analysis from the os/kernel subsystem be-
cause it contains code that have to work with all the
architectures, boards and compilers supported by the sys-
tem. Thereby, this is the module where portability is more
important. Examining the code we noticed that most of the
presence conditions have the shape ‘a-sub-expression’
|| defined(__DOXYGEN__). This has the goal of making
visible pieces of code to a tool used to produce documen-
tation. Because this symbol is not related to variability we
substituted it with the value ‘0’ (which evaluates to false for
the preprocessor) and simplified the expressions containing
it (for example defined(A) || defined(__DOXYGEN__)
would become defined(A)). This permits to identify as
redefinition guards snippets as the one presented in Listing
5.

#if defined(A) || defined(__DOXYGEN__)
#define A 123
#endif

Listing 5. A redefinition guard polluted by the __DOXYGEN__ symbol

We parsed correctly all the 41 files (18 C files and 23
header files). Excluding the statements described in Par.
III-B2 we obtained 246 presence conditions expressions (all
parsed correctly) and 233 definitions (both of symbols with
object-like or function-like symbols). We examined which
symbols were used in presence conditions: they were 54,
none of them being a function-like symbol. We then exam-
ined all the definitions of these symbols in the subsystem
to iteratively look for symbols that were indirectly referred

by presence conditions. We found only the symbols TRUE
and FALSE to be indirectly referred by presence conditions.
Out of the total 56 symbols used (directly or indirectly)
only 3 symbols were defined internally at the module:
CH_DBG_ENABLED, TRUE and FALSE. Being the other 53
symbols never defined in the subsystem we know they have
to be defined in the modules “using” the kernel module. For
this reason we lifted them as features. We therefore created
a feature model containing these 53 features.

The three symbols used in presence conditions and
defined in the subsystem were instead imported as derived
features. For TRUE and FALSE there was just one definition
which was always valid (i.e., the definitions were not
inserted in a variation point). CH_DBG_ENABLED instead
had two definitions. The first one under the condition
CH_DBG_ENABLE_ASSERTS || CH_DBG_ENABLE_CHECKS
|| CH_DBG_ENABLE_STACK_CHECK ||
CH_DBG_SYSTEM_STATE_CHECK, the second one under
the opposite condition. In the first case it was defined to
TRUE, in the second one to FALSE. We could import it
automatically because the different conditions under which
it was defined were disjoint, otherwise we would have
needed human judgement to import it.

To complete the feature model we imported the extra con-
straints from warning and error statements. In the subsystem
analyzed there were 6 errors statements and 0 warning state-
ments. For each error we calculated the presence conditions
and extracted the message.

B. Module demos/ARMCM3-STM32F103ZG-FATFS

The code of this module contains a definition for 31 out
of the 53 features present in the feature model extracted by
the OS Kernel. Other features could remain undefined or be
defined in other modules which are compiled together with
this one to produce the final demo: for example the module
containing the board-specific code or the code specific for
the ARM architecture. All the definitions of these features
have a presence condition equals to true. It means they are
always valid. The features have assigned in 28 cases either
the value TRUE or FALSE. Note that those macros assume
the value 1 or 0 (the preprocessor or the C language have
not a boolean type). We decided to import them as booleans
(which is supported by mbeddr-C) instead of simple integers.
One of the remaining three features is defined without
providing a value, while the other two assume the numerical
values 0 and 20.



C. Discussion

ChibiOS is a system written extremely well and the usage
of the preprocessor is very disciplinated. Because of that we
were able to extract without human intervention a feature
model and a configuration model from two of the modules of
the whole system. We could extract some of the constraints
of the feature model from error directives but most of them
had to be manually specified. The type of values that can
be associated to features was obtained indirectly, looking at
how the symbol was used in the configuration and updating
the feature model.

V. RELATED WORK

We classify the related work along four directions:
Substitute preprocessor directives Kumar et al. [7]

discuss how to substitute some usages of preprocessor
directives with features of the new standard of C++ (C++11).
ASTEC [8] is a variant of C with support to syntactic
macros. McCloskey et al. explain how they analyzed C code
and refactor the preprocessor directives using these exten-
sions. Both approaches target languages with no explicit
support for variability. ASTEC in particular lift the level
of abstraction from token to syntactic level.

Representing variability There are development tools
which provide a more intuitive representation of variability
concerns through the usage of background colors (e.g., [9]).
Our work could be integrated with such tools.

Variability information extraction Some approaches
aims to provide tools able to analyze the preprocessor direc-
tives and individuate possible bugs. Among these approaches
one of the most relevant is TypeChef [6]. While the goal
of these approaches is to achieve maximum accuracy and
generality, our approach is to capture the intentions as
expressed in the code.

Empirical study about preprocessor usage On this topic
it is very relevant the analysis presented by Ernst et al.
[10]. While their analysis is very deep and interesting, they
considered less lines of code that we did and they did not
address large projects as we did. The goal of their analysis
is more general, while we focus specifically on variability.
However we can confirm one of their findings: they reported
that 86% of preprocessor symbols were defined just once
among the 26 systems they considered. We found this value
to range between 69% and 90%.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we examined how in practice large, long
established projects use preprocessor directives to represent
variability. Results suggest that this category of projects
are quite disciplined in using them, as consequence idioms
and patterns can be identified and exploited to extract a
large part of the variability information present in the code
using simple heuristics. Our approach aims to preserve the
readability and the original intent expressed in the code:

while it has some theoretical limitations, it seems to be
applicable in practice, as suggested also by the results of
our experience with ChibiOS.

Our approach have still to be improved and completed:
we have to use the variability information extracted to
decorate the statements with presence conditions. Possible
improvements could include attributing automatically a type
to the extracted features. As future work we plan to perform
a case study on a project involving industrial partners.
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