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Abstract Tools can boost software developer productivity, but building cus-
tom tools is prohibitively expensive, especially for small organizations. For
example, embedded programmers often have to use low-level C with limited
IDE support, and integrated into an off-the-shelf tool chain in an ad-hoc way.

To address these challenges, we have built mbeddr, an extensible language
and IDE for embedded software development based on C. mbeddr is a large-
scale instantiation of the Jetbrains MPS language workbench. Exploiting its
capabilities for language modularization and composition, projectional editing
and multi-stage transformation, mbeddr is an open and modular framework
that lets third parties add extensions to C with minimal effort and without
invasive changes. End users can combine extensions in programs as needed.

To illustrate the approach, in this paper we discuss mbeddr’s support for
state machines, components, decision tables, requirements tracing, product
line variability and program verification and outline their implementation. We
also present our experience with building mbeddr, which shows that relying on
language workbenches dramatically reduces the effort of building customized,
modular and extensible languages and IDEs to the point where this is af-
fordable by small organizations. Finally, we report on the experience of using
mbeddr in a commercial project, which illustrates the benefits to end users.
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1 Introduction

Tools play an important role in the development of software. Adequate tools
support developers in various ways [37,12]. They

– increase productivity through automation of tedious development tasks,
– ensure the well-formedness of the content they produce,
– help verify critical properties of the system and help fix property violations,
– offer support for following a particular development process,
– and guide users by only showing data relevant to the current context.

Domain specific tools enable even better support, since they are aligned with
the class of problems relevant in a particular domain. However, developing
domain-specific tools is often infeasible because general-purpose tools are not
extensible in meaningful ways and developing a tool from scratch is expensive.
Justifying the effort may be hard because the tool will only be applicable in
a specific domain — the narrower the domain, the harder the justification.
Consequently, organizations often fall back on off-the-shelf tools and ad-hoc
tool-chains. Often these do not fit the domain very well, and the ad-hoc inte-
gration leads to friction losses. To substantially improve the status quo, it is
crucial that the cost for developing domain-specific tools be as low as possible.

Development tools are often centered around languages used to create con-
tent. Hence, building domain-specific development tools is closely related to
creating domain-specific languages. New kinds of views, input forms, or menu
items are not enough. Language workbenches are tools that support the effi-
cient development, extension and composition of general-purpose and domain-
specific languages and their IDEs. However, reports about their use for building
substantially large and practically usable domain-specific tools are rare. In this
paper we present our experience with instantiating the JetBrains MPS1 (Meta
Programming System) language workbench for building mbeddr2, a novel ap-
proach to embedded software development that integrates C, domain-specific
extensions of C and formal verification (Fig. 1).

Contribution The core contribution of this paper is to demonstrate that
language engineering as supported by projectional language workbenches is a
solid foundation for building sophisticated domain-specific development tools
with reasonable effort. The cornerstone of the approach is modular language
extension. This means that an extension to a language (including abstract syn-
tax, concrete syntax, type system and IDE services) can be developed without
changing the extended language (C in our case). Modular extension also means
that several independently developed extensions can be used together in the
same program.

To support this argument we report on mbeddr, an industry-strength devel-
opment environment for embedded software. Based on MPS, mbeddr supports
modular extension of C with different domain-specific constructs, offers ad-
vanced IDE support for the extensions, and supports formal analyses based

1 http://jetbrains.com/mps
2 http://mbeddr.com

http://jetbrains.com/mps
http://mbeddr.com


mbeddr: Instantiating a Language Workbench in the Embedded Software Domain 3

Fig. 1 An mbeddr example program using five separate but integrated languages. It con-
tains a module with an enum, a state machine (Counter) and a function (nextMode) that
contains a decision table. Inside state machines and decision tables developers can write
regular C code. The IDE provides code completion for all language extensions (see the
start/stop suggestions) as well as static error validation (Error... hover). The green trace
annotations are traces to requirements that can be attached to arbitrary program elements.
The red parts with the {resettable} next to them are presence conditions: the respective
elements are only in a program variant if the configuration feature resettable is selected.

on high-level abstractions. In the paper, we illustrate how the MPS language
workbench enables this approach based on its comprehensive support for lan-
guage modularization and extension as well as projectional editing. In partic-
ular, we address the following questions:

Q1 Is it feasible to build sophisticated domain-specific IDEs based
on a projectional language workbench? We are interested in the ma-
turity of the tools and the skills and efforts required for implementing
languages and analyses. Only if the efforts are low enough it is feasible to
use the approach in the context of industry projects. We investigate this
question using MPS as a representative example of projectional language
workbenches.

Q2 Does language modularity really work for realistically complex
use cases? Modular language extension requires syntax, type system,
transformation and IDE modularization. We consider modular extension
(as defined above) essential to keep the overall complexity manageable and
to allow third parties to independently build additional extensions on top
of the common base language or existing extensions.
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Q3 Does an approach based on language engineering, projectional
editing, and formal verification lead to tools that are beneficial
for real-world development? Earlier we emphasized that mbeddr aims
to serve as an example of a substantially large and practically usable system
built on language engineering with projectional language workbenches. To
verify this claim it is essential that real end users find the approach useful
to solve real-world problems.

Structure The structure of the paper reflects these questions. In the rest of
the introduction we provide a background on language workbenches and em-
bedded software development. In Section 2 we introduce three characteristics
of language workbenches we found particularly important for addressing Q1
and Q2: language modularity, projectional editing and multi-stage transfor-
mation. To show what we mean by ”sophisticated” in Q1, Section 3 illustrates
mbeddr based on four challenges in embedded software engineering: separating
specification and implementation, analysis and verification, requirements trac-
ing and product line variability. We then show how we address these challenges
using the three important characteristics to build modular extensions (Q2) in
Section 4. Section 5 explores the usefulness of the approach from two perspec-
tives: the tool developer-perspective (Q1) discusses the experiences made in
building mbeddr and the end-user perspective (Q3) discusses how end-users
benefit from mbeddr. This section is partially based on a real-world application
of mbeddr, a project that develops the software for a Smart Meter. We wrap
up the paper with the related work (Section 6) and a summary (Section 7).

Previous Work This paper partially overlaps with previous publications.
While this paper provides a comprehensive overview over mbeddr and dis-
cusses initial real-world experiences, the other publications in contrast address
specific aspects of mbeddr. [73] introduces the idea for embedded software de-
velopment with projectional language workbenches with an early prototype
C implementation and a simple example (a Lego robot). In [75] we look at
the current mbeddr implementation, focusing purely on language engineering.
We show in detail how we have built an extensible version of C and how we
integrate domain-specific extensions. [74] defines four approaches for language
modularization and composition, and shows how they are implemented with
MPS based on a set of simple examples. Finally, [63] introduces our approach
for using domain specific formal verification based on language extensions.

1.1 Language Workbenches and MPS

The term language workbench was introduced by Martin Fowler in 2005. In [26]
he characterizes a language workbench as follows (slightly paraphrased):

– Users can freely define languages that are fully integrated with each other.
– The primary source of information is a persistent abstract representation.
– A language has three main parts: schema, editor(s), and generator(s).
– Users manipulate a program through a projectional editor.
– A language workbench can persist incomplete or contradictory information

in its abstract representation.
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The above description explicitly requires projectional editing (discussed be-
low). However, as a consequence of advances in parser technology, the defini-
tion can be extended to grammar-based tools. So, essentially, language work-
benches are tools that support the efficient definition, composition and use of
sets of languages, domain-specific or general-purpose. Fowler’s definition also
implies IDE support for the defined languages. Although Fowler’s article is
from 2005, tools that fit his definition have existed for a long time. We discuss
some of them in Related Work (Section 6).

mbeddr is based on MPS, which is such a language workbench. It is de-
veloped by JetBrains and licensed as open source software under the Apache
2.0 license. MPS uses projectional editing, which is, as we discuss later, an
important enabler for its flexibility.

1.2 Embedded Software Development

Although the main contribution of this paper is in language engineering and
language workbenches, it is important to show how mbeddr fits into embedded
software development. Embedded software is software that is embedded in
some kind of mechanical or electronic device, often controlling most of the
functionality of that device. Today, embedded software is one of the main
innovation drivers and differentiation factors in many kinds of products [17].

Embedded systems are highly diverse, ranging from rather small systems
such as refrigerators, vending machines or intelligent sensors over building
automation to highly complex and distributed systems such as aerospace or
automotive control systems. This diversity is also reflected in the constraints
on their respective software development approaches and cost models. For ex-
ample, flight control software is developed over many years, has a large budget,
an expert team and emphasizes safety and reliability. The less sophisticated
kinds of embedded systems mentioned above are developed in a few months,
often with severe budget constraints and by smaller teams. The requirements
for safety and reliability are much less pronounced.

The tools used to develop these systems reflect these differences. Highly
safety-critical systems are often developed with tools such as SCADE3. Sys-
tems that are based on a standardized architecture or middleware, such as
AUTOSAR in the automotive domain, are often developed with tools that are
specific to the standard (such as Artop4). Model-based development and au-
tomatic code generation is particularly well suited for systems that are highly
structured in terms of state-based behavior or control algorithms. Tools like
ASCET-SD5 or Simulink6 provide suitable predefined, high-level abstractions
(e.g. state machines or data flow diagrams). Using higher-level abstractions
leads to more concise programs and simplified fault detection using static anal-
ysis and model checking (for example using the Simulink Design Verifier7).

3 http://www.esterel-technologies.com/products/scade-suite/
4 http://www.artop.org/
5 http://www.etas.com/
6 http://www.mathworks.com/products/simulink
7 http://www.mathworks.com/products/sldesignverifier

http://www.esterel-technologies.com/products/scade-suite/
http://www.artop.org/
http://www.etas.com/
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/sldesignverifier
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However, the state of the practice [20] is that 80% of companies implement
embedded software in C, particularly systems that are not safety-critical or do
not implement control algorithms. C is good at expressing low-level algorithms
and produces efficient binaries, but its limited support for defining custom
abstractions can lead to code that is hard to understand, maintain and extend.

Empirical studies found out that there is a need for tools that are more
specific for an application domain yet flexible enough to allow adaptation
[29,48]. Domain-specific languages (DSLs) are increasingly used for embedded
software [3,32,1]. Studies such as [13] and [48] show that DSLs substantially
increase productivity in embedded software development. Examples include
Feldspar, [3] a DSL hosted by Haskell for digital signal processing; Hume [32],
a DSL for real-time embedded systems as well as [28], which uses DSLs for
addressing quality of service concerns in middleware for distributed real-time
systems. All these DSLs are external DSLs. While they typically generate C
code, the DSL program is not syntactically integrated with C. This is useful
for some cases, but it is a limitation for others. Extending C to adapt it to a
particular problem domain is not new: [59] describes an extension of C for real
time applications, [8] proposes an extension for reactive systems, [5] describes
an extension for shared memory parallel systems. However, these are all specific
extensions of C, typically created by invasively changing the C grammar, and
they typically do not include IDE support.

mbeddr is fundamentally different. While it builds heavily on domain-
specific abstractions, mbeddr is an open framework and tool for defining mod-
ular extensions of C, based on the underlying MPS language workbench. In
contrast to essentially all other embedded development tools we are aware of,
third parties can use the same mechanisms for building their own extensions
that were used to implement C and the existing extensions. Third parties are
not at a disadvantage from having to use limited second-class language ex-
tension constructs. This is a fundamental shift in the design of tools and, as
Section 5 shows, it has proven very useful in the Smart Meter project.

mbeddr also directly integrates formal analyses based on the domain-specific
extensions. Even though formal analysis tools for C programs exist (e. g.,
deductive verification and abstract interpretation with different plugins for
Frama-C8; model checkers like SLAM9 and BLAST10, or commercial tools
such as the Escher C Verifier11 or Klocwork12), they are considered by many
practitioners as hard-to-use expert tools and are often avoided. This is be-
cause verifying domain-level properties (as opposed to low level properties
of the code such as read-before-write errors) requires complex code annota-
tions (e. g., Frama-C) or the use of tool-specific property specification lan-
guages. It is also difficult to re-interpret the analysis results on the domain
level [49]. mbeddr makes formal analyses more accessible by relying on high-

8 http://frama-c.com
9 http://research.microsoft.com/en-us/projects/slam/

10 http://mtc.epfl.ch/software-tools/blast/index-epfl.php
11 http://www.eschertech.com/products/ecv.php
12 http://www.klocwork.com/

http://frama-c.com
http://research.microsoft.com/en-us/projects/slam/
http://mtc.epfl.ch/software-tools/blast/index-epfl.php
http://www.eschertech.com/products/ecv.php
http://www.klocwork.com/
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level, domain-specific language constructs (such as state machines or decision
tables), making it easier to specify verification properties and interpret results.

Language extension is much more powerful than the alternatives available
to C programmers today. In contrast to libraries, language extensions can lead
to low runtime overhead because they are statically translated to C. They
also provide extensions to the type system and the IDE. Macros can have
similarly low overhead, but extensions of the type system and the IDE are
not supported. Also, since macros are low-level text transformations, all kinds
of maintainability problems can result from excessive use of macros. Never-
theless, many macro libraries, such as Protothreads [19] (which implements
lightweight threads), SynchronousC [33] and PRET-C[66] (both adding con-
structs for deterministic concurrency and preemption), are good candidates
for abstractions that could be reified as language extensions based on mbeddr.

In private communication with the authors, a potential user from a major
vendor of heating systems told us that he likes mbeddr because it is right in
the middle between programming in C and high-level, rigid modeling tools,
with the added benefit of extensibility. He argued that mbeddr lets him add
language-level support for the abstractions relevant for his platform (”I can
build my own AUTOSAR-like infrastructure for the heating systems domain
with very little effort”). This is a nice summary of how mbeddr is to be used.

2 Important Characteristics of Language Workbenches

Based on previous experience with MPS and other language workbenches we
found that three characteristics are especially important for language work-
benches. Building mbeddr, with its substantial size and complexity, has con-
firmed our beliefs. The characteristics are: language modularity and composi-
tion (implied by Fowler’s first item, and the basis of Q2), projectional edit-
ing (implied by Fowler’s second item and important for Q1) and multi-stage
transformation (also implied by Fowler’s first item and relevant for Q2). In
this section we discuss these characteristics. Section 4 illustrates how these
characteristics are supported by MPS, and how they can be used to imple-
ment a set of language extensions described in Section 3. In our Related Work
(Section 6) we discuss if and how other language workbenches support these
characteristics.

2.1 Language Modularity

Classical tool platforms such as Eclipse13 support modular tool extension based
on plugins. In this paper, however, we emphasize the need for language exten-
sion in addition to tool extension. Many tools essentially provide a user inter-
face for editing and processing data expressed with one or more formalisms or
languages. To be able to extend the tool in meaningful ways, extensions to the
underlying formalisms and languages are necessary as well (Q2).

13 http://eclipse.org

http://eclipse.org
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In contrast to general purpose programming languages (GPLs) such as C,
DSLs address much narrower domains. By encoding knowledge about the do-
main in the language and its associated analyzers, generators or interpreters, a
DSL is much more effective for expressing programs for that particular domain.
This effectiveness results in shorter programs, tighter integration of stakehold-
ers into the development process and increased suitability of the code for formal
analyses and automatic transformation. Pervasive use of DSLs for real-world
systems requires the set of concerns of the system to be described with a set
of languages, each optimized for a particular concern. Some of these languages
may be general purpose, some may be domain-specific. To implement the whole
system, this set of languages has to work together (Q2). Traditionally, lan-
guages have been combined by using an approach called referencing in [74].
There, two separate programs are written with separate languages. Each pro-
gram resides in its own file, and cross-references are established with by-name
references. An IDE may check the two programs for referential integrity. Ref-
erencing is useful if the two concerns addressed by the two languages should
be separated into two different viewpoints, each of them expressed with its
own language, and possibly described by different stakeholders. However, as
we will see in Section 3, many concerns benefit from a tighter integration that
includes syntactic composition. In [74], we identify the following composition
approaches that provide syntactic integration:

Extension: If a language l2 extends a language l1, l1’s concepts can be
used in the definition of l2 (we use the term concept to refer to the elements
of programming languages, comprising abstract syntax, concrete syntax and
semantics). l2 has a dependency on l1 and cannot exist without l1. A program
written in l2 may embed instances of l1’s concepts. An example would be the
extension of the C programming language with state machines (Section 3.4),
which adds new top-level concepts, types, expressions and statements to C.

Embedding: As in Extension, programs can use a mix of l1 and l2 syntax,
but the two languages remain independent, increasing their potential for reuse.
Embedding state machines into components is an example we discuss at the
end of Section 4.1. Another maybe more obvious example would be embedding
SQL in Java: since SQL would have no dependency on Java, it could also
be embedded into C. Often a third language will be used to adapt l2 to l1
syntactically and semantically.

MPS supports both modular language Extension and Embedding: in both
cases, no invasive changes to the participating languages are required. End-
user can use several independently developed extensions in a single program
as needed. This modularity is a critical building block for successfully building
extensible domain-specific IDEs. Q2 addresses this challenge.

2.2 Projectional Editing

Traditionally, text editors are used to enter character sequences that represent
programs. Based on a grammar, a parser then checks the text for syntactic
correctness and constructs an abstract syntax tree (AST) from the character



mbeddr: Instantiating a Language Workbench in the Embedded Software Domain 9

sequence. The AST contains all the data expressed by the text, but ignores
notational details. It is the basis for all downstream analysis and processing.

Projectional editing does not rely on parsers. As a user edits a program,
the AST is modified directly. A projection engine then creates some repre-
sentation of the AST with which the user interacts, and which reflects the
resulting changes (Fig. 2). This approach is well-known from graphical edi-
tors: when editing a UML diagram, users do not draw pixels onto a canvas,
and a ”pixel parser” then creates the AST. Rather, the editor creates an in-
stance of uml.Class as a user drags a class from the palette onto the canvas.
A projection engine renders the diagram by drawing a rectangle for the class.
This approach can be generalized to work with any notation, including textual.

Fig. 2 Left: In parser-based systems a user sees and manipulates the concrete textual
syntax of a program. A parser then (re-)constructs the AST from the text (going from the
AST to the concrete syntax requires extra care to retain formatting and is not supported
out of the box by most parsers – hence the dotted line). Right: In projectional editing,
while the user still sees a concrete syntax, each editing gesture directly changes the AST.
No parser is involved and it is not necessary to be able to (re-)construct the AST from a
flat text structure. Instead, the concrete syntax is projected from the AST.

In projectional editors, every program element is stored as a node with a unique
ID (UID). References between program elements are stored as pointers based
on the UID, so the AST is actually a graph. These references are established
during program editing by directly selecting reference targets from the code
completion menu. This is in contrast to parser-based environments where a
reference is expressed as a string in the source text, and a separate name
resolution phase resolves the target AST element. In a projectional editor,
programs are stored using a generic tree persistence format (such as XML).

What makes projectional editing interesting for language workbenches in
general, and for mbeddr in particular, are the following two characteristics.
First, the approach can deal with arbitrary syntactic forms including textual,
symbolic/mathematical, tabular and graphical14. This means that much richer
notations can be used in an integrated fashion, improving the usability to the
end user (Q3). The decision tables discussed in this paper are an example.
Traditionally the tools for building textual and tabular/symbolic/graphical
editors were very different in terms of their architecture and user experience,
and integrating them seamlessly was a lot of work, and sometimes impossible.

Second, when independent languages are composed (either in case of Em-
bedding, or in case several independent Extensions of the same base language
are used in a single program) the resulting composite language is never syn-
tactically ambiguous (which helps with Q2). This is in contrast to mainstream
parser-based systems that rely on a limited grammar class such as LR or LL(k),

14 MPS does not yet support graphical syntax, but will in 2013. Other projectional editors,
such as Intentional’s Domain Workbench [68] support graphical notations already.
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Fig. 3 Higher-level abstractions such as state machines or components are transformed
(T) to their lower-level equivalent. From the C program we generate (G) C text that is
subsequently compiled (C).

where such compositions are often ambiguous and require invasive change to
the composite grammar to resolve the ambiguities (we discuss the capabilities
of parser-based systems in Section 6, Related Work).

In principle, projectional editing is simpler than parsing, since there is
no need to ”extract” the program structure from a flat textual source. The
challenge for projectional editors lies in making them convenient to use for
end users (Q3). Traditionally, projectional editors have had a bad reputation
because users had to construct the syntax tree more or less manually instead
of ”just typing”. MPS has solved this problem to a large extent, the editing
experience is comparable to traditional text editors. We discuss some of the
strategies how MPS addresses the problem in Section 4.2, and look at some of
the remaining usability challenges in Section 5.3.

2.3 Multi-Stage Transformation

A transformation maps one program tree or graph on another one. In the con-
text of processing programs expressed with DSLs, the languages used to ex-
press these two graphs will usually be different: a more high-level and domain-
specific language is mapped to a more general one15 (Fig. 3).

However, for modular language extension and composition (Q2), transfor-
mations have to be composable as well16. In particular, it must be possible
to chain transformations, where the result of one transformation acts as the
input to another one. To avoid unnecessary overhead in this case, intermediate
transformations should be AST-to-AST mappings. Only if a subsequent tool
requires textual input (for example, an analysis tool or a compiler) should
textual output be generated. To make a set of transformations extensible, the
following features, both supported by MPS, are required:

– Several transformations for the same model have to be supported, either
executed in parallel (creating several products from a single input, for ex-
ample, configuration files and visualizations) or alternatively (creating dif-
ferent, alternative products from a given input, for example, for realizing
different non-functional characteristics of an extension; the static compo-
nent connections in Section 3.3.1 are an example).

15 Refactoring transformations work with a single language, and in reverse engineering,
transformations go from lower to higher levels of abstraction. However, those two cases are
outside the scope of this paper.
16 The static semantics also have to be composed. As discussed in [74], MPS supports the

modular definition of type system rules. We provide examples throughout Section 4.
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– Dependencies between transformations must be specified in a relative way,
and the transformation engine must compute a global transformation se-
quence based on the transformations configured for a particular program.
This supports plugging in additional transformations into the chain with-
out invasive modification of other transformations (see the transformation
of mocks at the end of Section 4.3).

Many transformation engines do not support the second item. While they
provide languages to express a single transformation, they often do not address
the extensible composition of several transformations. Eclipse Xtend17 is an
example that does not explicitly address composition. In contrast, Stratego [9]
provides higher-order functions to orchestrate transformations.

3 Example mbeddr C Extensions Relevant to Embedded Software

Question Q1 asks whether it is feasible to build a sophisticated domain-specific
IDE based on language engineering and MPS. In this section we illustrate what
we mean by ”sophisticated” based on examples from embedded software. We
first provide an overview over the mbeddr stack (Section 3.1), then briefly
discuss mbeddr’s implementation of C (Section 3.2) and finally look at four
embedded software engineering challenges and their solution in mbeddr: sep-
arating specification and implementation, analysis and verification, require-
ments tracing and product line variability (see sections 3.3 through 3.6). For
each challenge we first describe the challenge, then show how modular lan-
guage extension addresses the challenge (Q2) and wrap up with a brief look
of how specific features of language workbenches (from Section 2) enable the
implementation. We will provide details of the implementation in Section 4.

3.1 Overview over the mbeddr Stack

As Fig. 4 shows, mbeddr can be seen as a matrix. On the horizontal axis it
is separated into an implementation concern (left) and an analysis concern
(right). On the vertical axis it consists of a number of layers.

Fig. 4 The mbeddr stack at a glance. Details are explained in the running text (Section 3.1).

At the center is the MPS language workbench. On top of MPS, mbeddr ships
with a number of core languages. On the implementation side the core language

17 http://eclipse.org/xtext

http://eclipse.org/xtext
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is C. On the analysis side, the core comprises languages that represent different
analysis formalisms, currently SMT (satisfiability modulo theories) solving [67]
and model checking [14]. The next layer up consists of default extensions.
On the implementation side mbeddr ships C extensions for interfaces and
components, physical units, state machines plus various smaller ones, such
as decision tables (an example is at the bottom of Fig. 1). These build on
top of C and also translate back to C during generation. On the analysis
side the default extensions include support for model checking state machines
and for checking the completeness and determinism of decision tables. Below
the common platform JetBrains MPS, mbeddr integrates existing tools: a C
compiler for the implementation side (gcc by default, but it can be exchanged),
as well as the NuSMV18 model checker and Yices19 and CVC20 SMT solvers.
On top of the default extensions, users can develop their own application
level DSLs. These typically rely on the core and default extensions either by
directly extending (and translating back to) languages from those layers or
by embedding subsets of the languages from these layers into new application
level DSLs. We describe the Smart Meter user-level extensions in Section 5.

3.2 mbeddr’s Version of C

In order to be able to build extensions for C we first had to implement C in
MPS. This entails the definition of the abstract syntax (called structure in
MPS), the concrete syntax (called editor), a type system and a tree-to-text
generator (the G in Fig. 3) so the code can be piped into existing compilers.
While we implemented essentially all of C99 (it is supported by the vast ma-
jority of embedded C compilers), we did change some aspects. Some of the
changes are a first step to providing a more robust C, one of the goals of the
mbeddr project. Other changes were implemented because it is more conve-
nient to the user or because it simplified the implementation of C in MPS.
None of these changes constitutes a significant change in C’s expressiveness.
We provide an overview over all changes and the rationales for them in [75].
We mention the most important ones below.

mbeddr C provides modules to act as namespaces. A module contains the
top level C constructs (such as structs, functions or variables). These module
contents can be exported. Modules can import other modules, in which case a
module can access the exported contents of its imported modules. While header
files are generated in the end, we do not expose them to the user: compared
to header files, modules provide a more convenient means of controlling which
program elements are visible to others. Another use case for headers is the
separation of specification (header) from implementation (C file). mbeddr’s
components provide first-class support for this (see Section 3.3).

More generally, mbeddr C does not support the preprocessor. Instead,
mbeddr provides first class support for its most important use cases. Exam-

18 http://nusmv.fbk.eu
19 http://yices.csl.sri.com
20 http://www.cs.nyu.edu/acsys/cvc3

http://nusmv.fbk.eu
http://yices.csl.sri.com
http://www.cs.nyu.edu/acsys/cvc3
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ples include the modules mentioned above (replacing #include) as well as the
first-class support for variability discussed in Section 3.6 (replacing #ifdefs).
Since the preprocessor is often used to emulate missing features of C in an
ad-hoc way, removing it goes a long way in creating more maintainable and
more analyzable programs (cf. the empirical study in [24]). The same is true
for introducing a native boolean type and not interpreting int as booleans
by default. A cast operator is available for interoperability with legacy code.

3.3 Separating Specification from Implementation

The modules discussed above enable basic program modularization, visibil-
ity control and namespaces. However, they do not support the separation of
specification from implementation. A specification specifies clearly the service
provided to a client, independent of any particular (conforming) implemen-
tation, also supporting different implementations of the same specification.
Object-oriented and component-based programming exploit this notion for
program code. However, C does not support this feature beyond separating
sets of functions, enums, typedefs etc. into different .c and .h files.

3.3.1 mbeddr’s Solution

mbeddr, in contrast, supports a rich component model including interfaces,
components, instantiation, connectors and special support for testing compo-
nents based on mocks [70].

Interfaces An interface represents a specification and is essentially a set of
operation signatures, similar to function prototypes in C:

exported interface DriveTrain {
void driveForwardFor(uint8 speed, uint32 ms)
void driveContinouslyForward(uint8 speed)
uint8 currentSpeed() }

Components Components represent the implementation. They have ports,
where each port refers to an interface. A provided port declares that the com-
ponent implements the provided interface’s operations, and clients can invoke
them. These invocations happen via required ports which express an expecta-
tion of a component to be able to call operations on the port’s interface. The
code below shows a component RobotChassis that provides the DriveTrain
interface shown above and requires two instances of EcRobot_Motor. The
runnable (component method) dt_driveForwardFor is triggered by the drive-
ForwardFor operation from the dt port. Note how regular C code is used to-
gether with component-specific extensions for calling operations on a port:

exported component RobotChassis {
provides DriveTrain dt
requires EcRobot_Motor motorLeft
requires EcRobot_Motor motorRight

void dt_driveForwardFor(uint8 speed, uint32 ms) <- op dt.driveForwardFor {
motorLeft.set_speed(((int8) speed));
motorRight.set_speed(((int8) speed)); } }
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Like C++ classes, mbeddr components support polymorphic invocations: a
required port only specifies an interface, not the implementing component.
This way, different implementations can be connected to the same required
port. This is implemented via a function pointer in the generated C code.
However, to optimize performance (an ever present requirement in embedded
software), the generator can be configured to connect instances statically. In
this case, an invocation on a required port is implemented as a direct function
call, avoiding the function pointer overhead. Polymorphism is not supported
in this case — users trade flexibility for performance.

Instantiation Components can be instantiated. Each component instance
must have all its required ports connected to provided ports of other instances
that provide the same interface as the required port. This is an example of
how linguistic abstraction — making ports first class entities — improves ana-
lyzability, a major goal of mbeddr. Another difference of mbeddr components
compared to C++ classes is that mbeddr component instances are assumed to
be allocated and connected during program startup (embedded software typi-
cally allocates all memory at program startup to avoid non-determinism with
respect to timing and memory management problems during execution). The
following piece of code shows an instance configuration. It defines two instances
of EcRobot_Motor_Impl (each with a different value for its motorAddress
configuration parameter) as well as a single instance of RobotChassis. The
chassis’ required ports are connected to the provided ports of the two motors.

exported instances robotInstances {
instance RobotChassis chassis
instance EcRobot_Motor_Impl motorLeft(motorAddress = NXT_PORT_B)
instance EcRobot_Motor_Impl motorRight(motorAddress = NXT_PORT_C)
connect chassis.motorLeft to motorLeft.motor
connect chassis.motorRight to motorRight.motor }

Contracts mbeddr interfaces support contracts in the form of pre- and
post-conditions (inspired by Eiffel [56]) and sequencing constraints based on
protocol state machines. Below is the interface from above with contracts:

exported interface DriveTrain {
void driveForwardFor(uint8 speed, uint32 ms)
pre(0) speed < 100
post(1) currentSpeed() == 0
protocol init -> init

void driveContinouslyForward(uint8 speed)
post(1) currentSpeed() == speed
protocol init -> forward

void accelerateBy(uint8 speed)
post(1) currentSpeed() == old(currentSpeed()) + speed
protocol forward -> forward

query uint8 currentSpeed() }

The driveForwardFor operation requires the speed parameter to be below
100. After the operation finishes, currentSpeed will be zero (note how current-
Speed() is marked as query, which means that it is idempotent and hence can
be invoked any number of times without side effects). The protocol specifies
that, in order to call the operation, the protocol has to be in the init state
(the states are declared implicitly as they are used in the protocol specifica-
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tion). The post condition for driveContinouslyForward expresses that after
executing this method the current speed will be the one passed into the oper-
ation — in other words, the robot keeps driving. This is also reflected by the
protocol which expresses that it will be in the forward state after executing
the operation. The accelerateBy operation can only be called legally while
the protocol is in the forward state, and it remains in this state. The post
condition shows how the value returned by a currentSpeed() before the exe-
cution of the function can be accessed. Pre- and post-conditions reuse regular C
expressions and provide additional ones (for example, the old(..) expression
or the result expression to access the return value of non-void operations).

Contracts are specified on the interface, but the code that checks the con-
tract is generated into the components (i.e. the implementations of the inter-
face operations). The contracts are then checked at runtime. We plan to use
C-level model checkers to statically check whether the contracts are fulfilled.

3.3.2 Implementation Characteristics

Components and interfaces rely on modular language extension (Q2), they
blend in directly with C: interfaces and components live in modules alongside
functions or struct declarations; and regular C statements and expressions
can be used to implement components or specify contracts for interfaces. They
also use multi-stage transformation: components are translated to C functions
and structs, which are then transformed to text. State machines embedded
in components are first transformed to regular component implementations,
those are then transformed to C, which is finally transformed to text (see
Fig. 3). Components also makes use of multiple alternative transformations of
the same model: the optional static connection of ports implements the same
semantics with different non-functional properties.

3.4 Analysis and Verification

Formal verification of embedded software has traditionally been driven by the
safety-critical systems community where system failure can cause considerable
damage or hurt people. Safety-critical software must comply with various cer-
tification standards that require formal verification to ensure the absence of
such defects. Many successes of using formal verification have been reported,
but these are isolated, involve experts, big budgets and products that have a
relatively long development cycle [60]. Verification can also be useful for non-
safety-critical embedded software, since, once deployed in the field, embedded
software is often hard to debug and fix: the device may have limited I/O ca-
pabilities or may be hard to access physically. In this case, verification can
be used pragmatically to find bugs. [60,49,16] describe several reasons why
verification is not used by mainstream developers. The most important are:

1. Verifying programs written in general purpose languages is expensive be-
cause of the low level of abstraction. Users of verification tools feel the
accidental complexity along four directions. First, expressing domain-level



16 Markus Voelter et al.

properties in terms of low-level program code is challenging. Second, inter-
preting the low-level verification results at the domain level again requires
bridging the abstraction gap, this time in the opposite direction. Third,
implementation details irrelevant to the verification itself may be outside
the language subset supported by the verification tool, preventing the veri-
fication tool from starting up (e. g., pointer casts are unsupported features
of the Frama-C Jessie plugin [52] and prevent Jessie from starting). Fourth,
verification tools for GPLs are rather slow and hard to use in an agile way.
They may also encounter state space explosions or run out of memory.

2. Describing the system and the to-be-verified properties in the specification
language of a dedicated verification tool (e. g., model checkers) eliminates
the noise introduced by GPLs and makes the verification process more effi-
cient. However, there is a big semantic gap between the domain knowledge
and the input languages of verification tools. Translation of application do-
main problems into the specification language is tedious and error prone,
and the interpretation of the tool’s output is hard.

Due to these reasons there is a perception among many practitioners that
formal methods are only for experts, requiring the use of sophisticated tools
and languages. Many practitioners shy away simply because of this perception.

3.4.1 mbeddr’s Solution

In mbeddr we rely on automatically generating the input to the verification
tool from higher-level and domain-specific abstractions and reinterpreting the
results in the context of these higher-level abstractions. We use language engi-
neering to enable this approach: the higher-level abstractions are incrementally
added to and tightly integrated with C programs, avoiding the need to work
with different tools for different abstractions or analyses. We also locally re-
strict parts of C to make it easier to analyze. We integrate the verification
tools directly into the IDE, hiding the tool complexities from the user [63].
In this section we discuss in detail two examples of analysis and verification:
decision tables and state machines. We mention a third one in Section 3.6.

Fig. 5 A decision table is an ex-
pression that evaluates to that
value whose column header and
row header are true. They are es-
sentially generated into nested if
statements (column headers will
be the outer ifs, evaluated first).

Decision Tables Fig. 5 shows an example decision table [39]. It determines
a new MODE based on the current value of the mode and speed arguments.
The table also specifies a default value ERROR that is used in case none of the
cases expressed by the table actually fits the input data. For a two-dimensional
decision table, there are two obvious possible analyses:
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– Completeness requires that every behavior of the system is explicitly con-
sidered and no case is omitted: this requires listing all possible combinations
of the input conditions in the table (avoiding the need for a default value).

– Determinism checks that there are no sets of input values for which several
cases are applicable

We perform these analyses for decision tables that are marked as verifiable.
As long as the conditions in the table only use logical and linear arithmetic
expressions, these analyses can be reduced to SMT problems (we check for lin-
earity statically in the IDE and report an error if the condition expressions in a
verifiable table are not linear). A table with n rows (ri) and m columns (cj),
can be checked for completeness by checking the satisfiability of the following
formula (if satisfiable, the table is incomplete):

¬
n,m∨
i,j=1

(ri ∧ cj)

Similarly, the determinism of decision tables can be expressed by using the
following formula. If it is satisfiable, a non-determinism was found.

n,m∨
i,j=1

n,m∨
k=i+1,l=j+1

(ri ∧ cj ∧ rk ∧ cl)

For verifiable tables, the input for the solver is generated from the table
and the integrated Yices SMT solver21 is run. The result of running the solver
is evidence for a satisfiable formula. This evidence is lifted and interpreted
with respect to the analyzed decision table, providing the user with the data
necessary to understand the combinations of input data that lead to problems
with regard to the analyses. The code below shows the result of running the
completeness and determinism analyses on the decision table from Fig. 5.

FAIL: incomplete. example: speed = 21, prev = ERROR
FAIL: non-determinism betw. cells (1,1) and (1,2). example: speed = 21, prev = MANUAL
FAIL: non-determinism betw. cells (2,1) and (2,2). example: speed = 21, prev = AUTO

State Machines The second example for integrated verification concerns
proving properties of state machines using model checking [15]. The approach
is similar to the one used in decision tables: from a state machine marked as
verifiable we generate the input to the NuSMV model checker22, run it, and
show the results in the IDE (Fig. 6). As with decision tables, verifiable state
machines are limited to make model checking straightforward. For example,
a local variable cannot be read and written during a single transition, and
all integral types are bounded. We check a set of default properties for every
state machine including unreachable states, transitions that cannot be fired,
determinism and whether local variables remain inside the specified bounds.
In addition, we have implemented a set of well known verification patterns23

which mbeddr users can use to express custom verification conditions.

21 http://yices.csl.sri.com
22 http://nusmv.fbk.eu/
23 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

http://yices.csl.sri.com
http://nusmv .fbk.eu/
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
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Fig. 6 A verifiable state machine has a context menu action that runs the model checker,
the results are reported back directly in the IDE. Clicking on a state in the counter example
for a failed property (lower part of the table), focuses that particular state in the editor.

In Fig. 6 the checker reported an error: the two step transitions in countState
are non-deterministic for currentVal + size == LIMIT. We show the counter
example in the lower part of the table. Custom properties are specified in the
inspector, shown at the bottom left of Fig. 6. In the example, we claim that
LIMIT is always 10. The model checker proves this to be true.

3.4.2 Implementation Characteristics

The integration of analysis tools uses all three important characteristics of
language workbenches: language modularity (Q2) is exploited for providing the
language extensions on which the verification tools rely. Projectional editing
is exploited in the decision tables, which could not use the intuitive tabular
notation in a parser-based environment. Multi-level transformations are used
by the language extensions’ transformations back to C, but also by creating
a C implementation and an implementation in NuSMV or Yices from the
same source. The integration of analysis tool also makes use of traditional tool
extensibility by the mere fact that Yices and NuSMV are integrated, and by
the fact that the results can be shown inside a view in the IDE.

3.5 Requirements Tracing

The relationship between requirements and implementation code is important
in the context of many development processes and certification standards. If
and when a set of requirements are related to a particular part of the imple-
mentation, interesting analyses become possible:

– if the rationale for some piece of implementation code is in doubt, it is easy
to find out which requirements prescribe what it is supposed to do
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– if a set of requirements changes, it is straightforward to find out which
parts of the implementation are potentially affected by the change

– test coverage analysis can be performed by finding out which requirements
have test code associated with them.

To support these analyses, implementation artifacts must be traced to require-
ments [40]. A trace is essentially a typed pointer (e.g. implements or tests)
from some part of the implementation to one or more requirements. In terms
of tooling the challenge is that traces should be attachable not just to whole
artifacts (such as C files or a PDF document), but to arbitrary parts of an
artifact, expressed with arbitrary languages (C, default extension or a user ex-
tension in case of mbeddr). Also, as the respective program parts are moved,
copied or edited, these traces should stay attached to the element.

3.5.1 mbeddr’s Solution

Specifying Requirements Requirements can be collected in instances of
RequirementsModule, a concept defined in the requirements language (CSV
import is also supported). An example from the Smart Meter project is shown
in the left part of Fig. 7. Each requirement has an ID, a short prose summary,
and a kind (functional in the example). A kind may come with its own ad-
ditional specifications, expressed in a kind-specific DSL. For example, timing
requires users to enter a timing specification. While the hierarchical structure
represents refinement (where a child requirement provides additional details
for its parent requirement), constraints such as conflicts with or requires
also cross-cut the hierarchy.

The requirements language is extensible with new requirements kinds and
new constraints. Also, completely new DSLs can be plugged in as a means of
describing additional data for a given requirement kind. A trivial example of
an extension used in the Smart Meter project are the section and affected
component elements visible in the right part of Fig. 7. The optionally visible
details view contains additional prose and the kind-specific DSL programs.

Fig. 7 Left: The editor shows the summary of requirements, organized as a tree. Right:
The optionally projected details pane allows users to specify an extended prose description,
additional constraints among requirements as well as kind-specific data.

Tracing A trace establishes a link between a program element and any target
element that implements ITraceTarget. Requirements implement ITraceTar-
get by default. Importantly, the language that defines the node to which a
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trace is attached does not have to know about tracing (the two concerns are
orthogonal, see Section 4.2). A trace is connected to the traced element, and
not just rendered next to it: if the element is moved, the trace moves along.
In Fig. 8 (left) a trace is attached to an assignment.

Fig. 8 Left: A component runnable that contains an assignment with an attached require-
ment trace (the green label implements Accuracy). Traces can be attached to arbitrary
program nodes, supporting tracing at any level of detail. Right, Top: The requirements
can be color-coded to reflect whether they are traced at all (grey), implemented (blue) and
tested (green). Untraced requirements are red. Right, Bottom: The Find Usages dialog
shows the different kinds of traces as separate categories. Finally, programs can also be shown
without the traces using conditional projection (a mechanism discussed in Section 3.6).

Traces can be evaluated in reverse. For example, Fig. 8 (right, top) shows
how requirements can be color-coded to reflect their state. In addition, the
generic MPS Find Usages facility has been customized: if the user executes
Find Usages for requirements, the various kinds of traces are listed separately
in the result (Fig. 8 right bottom, shows the result for the implements kind).

Note that attaching traces to the respective model elements cannot be au-
tomated. We rely on the discipline of users to create a reasonably complete
set of traces. However, our experience is that in contexts where tracing is re-
quired (for example, for certification) users usually have this kind of discipline.
Also, tracing only works well for requirements that are associated with partic-
ular elements. Cross-cutting requirements or those that address non-functional
characteristics are harder to trace. This is a fundamental limitation of tracing.

3.5.2 Implementation Characteristics

The tracing feature makes use of language extension. Among other things it
enables the contribution of new trace targets, trace kinds and requirements
kinds. Language embedding enables plugging in arbitrary languages into the
additional specifications section. Projectional editing is exploited in the ex-
pandable requirements editors, and, importantly, in the ability to attach the
traces to arbitrary program elements while keeping the tracing extension in-
dependent of the the languages used to express the traced elements (Q2).

3.6 Product Line Variability

Product line engineering involves the coordinated construction of several sim-
ilar, but different products. Managing the differences over the sets of products
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in a product line is non-trivial. The industry best practice approach [7] involves
two steps. First, variability among products is described on a conceptual level
without a relationship to an implementation. Feature models [6] are often used
here. In a second step, parts of implementation artifacts are related to the fea-
tures: a particular part of the implementation is only part of a given product
if the referenced features are selected for this product [36].

For a development tool this leads to two challenges. First, it must be pos-
sible to associate arbitrary (parts of) implementation artifacts with configura-
tion features to express the dependency of those artifacts on the feature. The
challenge is similar to the one for requirements tracing discussed in the previ-
ous subsection. The second challenge lies in enabling the user to comprehend
the variability in a program. Depending on the number of variable parts, it is
not easy to understand what each variant of each artifact will look like, and
whether each variant constitutes a well-formed or even correct program.

3.6.1 mbeddr’s Solution

Feature Models Feature models express configuration options and the con-
straints among them. Features are expressed as a tree where a parent feature
expresses constraints regarding the combinations of child features, limiting the
set of valid configurations to a manageable size24. Constraints include:

– mandatory: mandatory features have to be in each product. In Fig. 9,
each Stack has to have the feature ElementType.

– optional: optional features may or may not be in a product. Counter and
Optimization are examples of optional features in Fig. 9.

– or: a product may include zero, one or any number of the features in an
or group. In Fig. 9, a product may include any number of features from
ThreadSafety, BoundsCheck and TypeCheck.

– xor: a product must include exactly one of the features grouped into a xor
group. in Fig. 9 the ElementType must either be int, float, or String.

In addition cross-cutting constraints are supported by most feature model
implementations. In mbeddr, a feature can declare conflicts with and a
requires also constraints relative to arbitrary other features. Features may
also have configuration attributes (see the size of the fixed feature in Fig. 9).

Fig. 9 An example feature model
in mbeddr. Until MPS will pro-
vide support for graphical nota-
tions (planned for 2013), we use a
textual notation.

24 If a product line’s variability were just expressed by a set of Boolean options, the con-
figuration space would grow quickly with 2n, with n representing the number of options.
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Instead of using the well-known graphical feature diagram notation, in
mbeddr we use a textual notation for representing feature models shown in
Fig. 9 (support for graphical syntax in MPS will be available only in 2013).

Configurations A configuration is a named set of selections from the features
in a feature model. The selection has to be valid regarding the constraints
defined in the underlying feature model. Fig. 10 shows two examples. If an
invalid configuration is created, errors are shown in the configuration model.

Fig. 10 Two valid configurations of the feature model from Fig. 9.

Presence Conditions A presence condition is an annotation on a program
element that specifies under which conditions the program element is part of
a variant via a Boolean expression over features. For example, the two red
statements in Fig. 1 are only part of a product if the resettable feature is
selected in the product configuration. The background color of an annotated
node is computed from the expression: the same expression results in the same
color (an idea borrowed from Christian Kaestner’s CIDE [42]).

As a further example of analysis and verification, we use the SMT solver to
ensure that a feature model is free from conflicts and that configurations are
consistent with the respective feature models. For example, if a feature A has a
requires also constraint to feature B, and feature B expresses a conflicts
with constraint regarding A, then the feature model contains a conflict.

The fact that one can make arbitrarily detailed program elements depend
on features does not mean that no further structuring of the product line is
necessary, and all variability should be expressed via fine-grained presence con-
ditions. Instead, presence conditions should be used to configure more coarse
grained entities such as the instantiation and wiring of components.

Rendering Variants It is possible to edit the program as a product line
(with the annotations, as shown in Fig. 1), undecorated (without annotations)
as well as a specific product (in Fig. 1, the resetted out event and the on
start transition would not be shown in the editor if the selected variant did
not include the resettable feature). The latter is helpful to the programmer
to visualize how a given variant will look like in the face of several interacting
presence conditions. During transformation, those parts of programs that are
not in the product are removed from the model, so no code is generated.

3.6.2 Implementation Characteristics

Just as in requirements traces, we exploit MPS’ projectional editing facilities
to attach presence conditions to arbitrary program elements, while keeping
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the language that defines the presence conditions independent of the language
whose concepts are potentially annotated (Q2). The ability to show config-
urations directly in the editor is achieved using conditional projection rules.
The product line support also makes use of multi-stage transformation: those
element whose presence conditions are false are removed from the program
by a generic transformation before they are transformed any further.

4 Implementation of some mbeddr C Extensions with MPS

To provide a basis for the conclusions regarding feasibility and effort (Q1)
made in Section 5, this section illustrates the implementation of some of the
examples discussed in the previous section. The particular examples are se-
lected to ensure that there are examples for each of the three technical pre-
requisites we discussed in Section 2: language modularity, projectional editing
and multi-stage transformation. We also briefly discuss how traditional tool
extensibility fits into the picture. Fig. 11 provides an overview over the most
important aspects of MPS language definition.

Fig. 11 In MPS, a language consists of several aspects. The figure shows the most important
ones (language structure is MPS’ term for abstract syntax). In addition, languages can
specify refactorings, find-usages strategies, migration scripts and debuggers (all of these are
not discussed in this paper). Languages can make use of other languages in their definition
and generate down to other languages. Transformations specify priorities relative to other
transformations; MPS calculates a global transformation schedule based on these priorities.

4.1 Language Modularity

As we have discussed in Section 2.1, language Extension and language Embed-
ding (both explained in detail in [74]) are the means of language modularity
and composition most relevant in language workbenches. In mbeddr we use
mostly language Extension: the extending language has a dependency on the
base language and can make use of the concepts defined in that base language.
Furthermore, it cannot invasively change the base language (Q2).

As discussed in Section 2.2, the composability of concrete syntax never
leads to ambiguities in MPS, so we can discuss the design of modular lan-
guages mostly in terms of the abstract syntax (called language structure in
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MPS). This, in turn, is essentially object-oriented (OO) design: language con-
cepts have properties and references to other concepts, a concept can extend
another concept and can be used polymorphically. Abstract concepts and con-
cept interfaces are supported as well.

Plugging Interfaces into Modules Interfaces are a language concept de-
fined in the components extension. However, to integrate with C, they have to
be embedded into modules, which are defined in the C core language. Modules
contain a collection of IModuleContents in the contents child relationship.
Anything that implements the IModuleContent interface can be used there:

concept Module extends BaseConcept
children: IModuleContent contents 0..n

To allow instances of Interface to live inside Modules, the Interface concept
implements IModuleContent:

concept Interface extends BaseConcept implements IModuleContent
children: Operation operations 0..n

Postconditions An Operation has a list of PrePostConditions, an abstract
concept that acts as the supertype of Precondition and Postcondition. A
PrePostCondition contains a child called expr of type Expression, which is
inherited from the C base language. It is an abstract concept, and all the C
expressions (operators, literals, function calls) extend this concept:

concept PrePostCondition extends BaseConcept
children: Expression expr 1

In post conditions, the user must have access to the result of the context
operation to express things like the result value is greater than zero. To make
this possible we create a new subtype of Expression, the ResultExpression:

concept ResultExpression extends Expression

By making it a subtype of Expression, it can be used anywhere an Express-
ion is expected. However, this is not the behavior we want in this case. We have
to restrict the ResultExpression to inside of PostConditions. And we only
want to allow it if the return type of the owning Operation is not void (there
is no meaningful result for void operations). Both restrictions are implemented
by a constraint. Constraints restrict the usage context of language concepts
beyond what is implied by the language structure:

can be child constraint for ResultExpression {
(operationContext, scope, parent, link, childConcept)->boolean {
boolean isUnderPost = parent.ancestor<PostCondition>.isNotNull;
boolean isVoid = parent.ancestor<Operation>.returnType.isInstanceOf(VoidType));
return isUnderPost && !isVoid; } }

We still have to define the typing system. In MPS, language concepts specify
typing rules, and an inference engine solves the set of equations contributed
by the elements in a given program. This way, typing rules are declarative:
new rules can be added at any time, and they work together smoothly with
rules from the base language. The ResultExpression must have the type of
the ancestor Operation’s return type:
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rule typeof_ResultExpression for ResultExpression as resultExpr {
node<Operation> op = res.ancestor<concept = Operation>;
typeof(resultExpr) :==: typeof(op.returnType); }

Embedding State Machines in Components Ideally, independently de-
veloped extensions should be usable together in the same program without ex-
plicitly designing them for any particular combination (Q2). For example, any
concept that implement the IModuleContent interface can be used alongside
any other IModuleContent in a single program as long as their transformations
do not interfere with each other (see Section 6).

However, sometimes it is not so simple. For example, while state machines
have been designed to be used as top level concepts in modules (they im-
plement IModuleContent), they should also be usable in components. Those,
however, expect their contents to implement IComponentContent. The mis-
match can be resolved by using the Adapter pattern [27]: a new concept
SmCompAdapter is defined which implements IComponentContent and contains
a State Machine. The editors can be built in a way that users do not see this
adapter element when entering or reading the code. The adapter concept lives
in a separate language, so neither the components nor the statemachines
languages have a dependency onto the other. This characteristic makes this
example an instance of Language Embedding as per Section 2.1 and [74].

4.2 Projectional Editing

MPS’ support for language modularization and composition is very much due
to its use of projectional editing because concrete syntax introduces very little
additional complexity. In this section we describe the definition of editors.

Before we do this, however, we discuss some of the strategies MPS uses
to make projectional editing convenient from an end user’s perspective (Q3).
Traditionally, projectional editors were hard to use because the editing gestures
known from regular text editors did not work. MPS has solved this issue to a
large degree using the following strategies, among others:

– Aliases The language concepts legal at a given program location are made
available in the code completion menu. For instantiation, a naive implemen-
tations requires users to select a concept based on its name. This is inconve-
nient. In MPS, concepts instead specify an alias. As the user types the alias,
the concept is immediately instantiated. For example, a ForStatement can
be instantiated by typing for. Since this is also the starting keyword in
ForStatement’s projection, it feels like ”just typing” a for loop.

– Side transforms support entering trees linearly. Consider changing int a
= 2; to int a = 2 + 3;. The 2 in the init expression needs to be replaced
by an instance of +, with the 2 in the left slot and the 3 in the right. Instead
of manually removing the 2 and inserting a +, users can simply type + on
the right side of the 2. This triggers the editor to move the + to the root of
the subtree, put the 2 in the left slot, and then put the cursor into the right
slot to accept the second argument. This way, expressions (or anything else)
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can be entered linearly, as in a text editor. Entering expressions linearly
requires taking into account precedence rules. To achieve this, each (binary
and unary) expression has a numerical precedence value associated with
it. Side transforms, after constructing a tree fragment, invoke a helper
function that reshuffles the tree according to the priorities. This way, a
linearly entered expression always reflects precedence in its tree structure,
independent of the order in which the subexpressions are entered. Side
transforms can also be used to support adding cross-tree parentheses (as
in changing 2 + 3*4 to (2+3) * 4 by pressing ( on the left of the 2).

– Smart delimiters are used to simplify inputting lists of elements (such as
argument lists) separated with a separator (e.g. comma). Users can just
press the delimiter key (comma) to add a new element to the list. Smart
delimiters can be considered a shortcut for specialized side transforms.

– Delete actions are used to similar effect when elements are deleted. Deleting
the 3 in 2 + 3 keeps the +, with an empty right slot. Deleting the + then
removes the + and puts the 2 at the root of the subtree.

– Wrappers Consider int a;. Users want to enter a local variable by starting
with the type, not by explicitly selecting LocalVariableDeclaration from
the code completion menu. A wrapper can be used to this effect. It wraps
the LocalVariableDeclaration with Type. Once a Type is entered, the
wrapper implementation creates a LocalVariableDeclaration, puts the
Type into its type field and moves the cursor into the name slot.

– Smart references achieve a similar effect for references (as opposed to chil-
dren). Consider pressing Ctrl-Space after the + in 2 + 3 and assume that
a couple of local variables are in scope which should be available in the code
completion menu. Technically, a VariableReference has to be instantiated
first, before its variable slot then is made to point to a variable. This is
tedious. Smart references trigger special editor behavior: if in a given con-
text a VariableReference is allowed, the editor first evaluates its scope
to find the possible targets and puts them into the code completion menu.
If a user selects one of them, then the VariableReference is created, and
the selected element is put into its variable slot. This makes the reference
object transparent in terms of the user experience.

The above features are the major contributors to making the user’s editing
experience very close to editing text files. In addition, like any other modern
IDE, projectional editors use intentions (also known as quick fixes). These
are small in-place transformations that can be triggered by the user, and, for
example, wrap a statement with an if, or wrap an expression with a type cast.

As we have seen with the can be child constraint for the ResultExpres-
sion in the previous section, projectional editing also supports restricting the
user from entering language constructs in contexts where they are not allowed.
Such restrictions can take into account arbitrary structural context, the type
system or any other program analysis that can be expressed with Java code.
These restrictions effectively guide users towards building programs that are
correct with regards to structure and static semantics. However, it may be
unintuitive to users in some situations, which is why the traditional approach
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(allowing users to enter code and then reporting an error if something are
detected to be illegal) is supported as well, as long as the entered concept is
structurally valid in the given location.

To support language composition effectively, the mechanisms for improving
the editing experience discussed above must also work in the face of modular
language composition (Q2). For example, if independently developed language
extensions define the same alias for different concepts that are valid at the same
location, then, after typing the alias, MPS opens the code completion menu
and forces the user to decide which concept to instantiate. This facilitates
modular extension, while degrading the editor experience only slightly instead
of failing or requiring invasive changes. This situation is rare, because specific
extensions can be restricted to very specific context as mentioned in the pre-
vious paragraph. Another example are right transformations. They can also
be context-limited with an applicability condition. For example, if a language
extension defines a new kind of dot operator (as in a.b) that potentially con-
flicts with struct or union access in C, the right transformation that accepts
the dot can be limited to a particular type of the context expression.

A final benefit of projectional editors is that program parts irrelevant in
a specific situation can be hidden using conditions in the projection rules,
essentially supporting views on programs25. For example, as discussed in Sec-
tion 3.6, a program can be shown in a variant-specific way by hiding the parts
that are not included in a particular variant.

Fig. 12 The editor for Operation fundamentally consists of a list of cells ([- .. -]). The
first element is the query cell (marking operations as idempotent) which is projected condi-
tionally: the ? operator contains a condition that is true if the isQuery property is true (this
is specified in the inspector, as shown in the inset). The next cell (%returnType%) embeds the
editor for the returnType child link. We then embed the list of parameters between paren-
theses, separated by a comma (also specified in the inspector — not shown). Finally, on new
lines each, we embed the editors for conditions and protocols. Note that the indentation
level and other stylistic issues are prescribed by the projection.

An Editor for Operations The basic abstraction for defining editors is
the cell, the smallest unit of projection. A cell may contain a constant text,
a collection of other cells laid out in a particular way, or refer to a property,
reference or child link of a concept — in which case the editor for that property
or link is embedded. The editor for operations, shown in Fig. 12, embeds the
editor for the return type, the parameters of the operation, as well as the
pre- and post-conditions and the protocols. Cells can be shown optionally: the
query flag on interface operations is an example.

Requirements Traces Traces use MPS’ annotations mechanism. An anno-
tation is a concept whose instances can be added as a child to a node without

25 The upcoming version 3.0 of MPS will support several editors for the same concept.
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that node’s concept declaring this child. Annotation can be added to any node,
unless explicitly restricted. Here is the definition of the TraceAnnotation:

concept TraceAnnotation extends NodeAnnotation
children: TraceKind tracekind 1

TraceTargetRef refs 0..n
concept properties: role = trace
concept links: annotated = BaseConcept

Annotations must extend the MPS-defined concept NodeAnnotation. It can
then define any arbitrary structure. For the requirements trace we define two
child links: the first one represents the kind of trace (such as implements
or tests), the second one contains a collection of references to trace targets
(e.g. requirements). An annotation has to specify two additional properties:
the role property defines the role name used by the TraceAnnotation under
the annotated node. In the example, a TraceAnnotation would be stored
in the @trace link. The annotated property specifies which concepts this
annotation can be attached to. BaseConcept is a supertype of all concepts, so
the TraceAnnotation can be attached to any program node.

Fig. 13 The editor for the TraceAnnotation embeds the editor of the annotated node
(represented by the predefined cell type annotated_node), resulting in the annotation editor
”wrapping around” the editor for the annotated node.

We discuss annotations in the section on projectional editing because the ed-
itor, shown in Fig. 13, is the most interesting aspect. The annotated_node
cell (a predefined cell type), embeds the editor of the element under which the
TraceAnnotation lives. This way, although the TraceAnnotation is struc-
turally a child of the annotated node, the annotation’s editor is rendered
around the annotated node. In case of the TraceAnnotation, we first em-
bed the annotated node, and then, to its right, we render the tracekind and
the set of trace target references. The projection of the tracekind and the
references is conditional: the expression behind the ? (not visible in the figure)
makes sure these cells are only projected if a global flag is set; otherwise the
program is shown without traces.

The annotation mechanism is also used in the product line variability pres-
ence conditions. In the projection mode that renders a particular product con-
figuration we use a similar conditional projection rule to remove the whole
annotated element (not just the annotation itself) in case the presence condi-
tion is false for the currently rendered variant.

Decision Tables Decision tables are interesting because they use a tabular
notation. Defining a tabular editor is straightforward: the definition contains
a table cell, which delegates to a Java class that implements ITableModel. It
provides methods such as getValueAt(int row, int col) or deleteRow(int
row), which have to be implemented for any given editor. To embed another
node in a table cell, the implementation of getValueAt returns this node.

A Side Transformation for Invocations on Ports In Section 3.3.1 we
have shown example code that invokes an operation on a required port:
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requires EcRobot_Motor motorLeft
void dt_driveForwardFor(uint8 speed, uint32 ms) <- op dt.driveForwardFor {

motorLeft.set_speed(((int8) speed)); }

The set_speed invocation on the motorLeft port can be used to illustrate
side transformations. The user first enters motorLeft. This is an instance of
RequiredPortRefExpr. Then, if the user enters a dot on the right of this
expression, it has to be transformed into a RequiredPortOpCallExpr, and
the user has to enter a reference to the an operation defined by the referenced
port’s interface. Here is the right transformation code that accomplishes this:

right transformed node: RequiredPortRefExpr creates: RequiredPortOpCallExpr
matching text: .
do transform (operationContext, scope, model, sourceNode, pattern)->node<> {
node<RequiredPortOpCallExpr> call = new node<RequiredPortOpCallExpr>();
sourceNode.replace with(call);
call.requiredPort = sourceNode; }

4.3 Multi-Stage Transformations

In MPS, multi-level language extension is the norm, so support for multi-stage
transformation must be available as well. These transformations are model-to-
model transformations: a new AST is created from an existing AST. To pre-
serve modularity and composability (Q2), transformations specify a ordering
relative to other transformations, and MPS computes a global order for the
transformation of a program based on the languages used in the program.

In MPS, a transformation is specified as a set of transformation rules. Each
rule specifies the node it transforms, an optional condition that determines
when it applies, as well as a code template in the target language that describes
the result of the transformation. Templates are valid target language program
fragments, annotated with macros (the editor provides IDE support for the
target language — see below). Macros are replacement rules executed during
transformation execution. Different macros exist for replacing whole nodes, for
changing the values of properties, and for retargeting a reference. We will see
examples of these in the following paragraphs. While this approach guarantees
to generate only structurally valid ASTs, the transformations are not hygienic:
the developer must make sure that references bind to the correct targets, and
newly introduced symbols must have unique names so they are not accidentally
targeted by existing references if they are rebound during a transformation or
name-resolved in the generated, textual C program.

Transforming Interfaces Interfaces have no equivalent in C, they are used
purely on the extension level for checking compatibility of ports. The generator
is trivial: it uses an abandon node rule to discard the Interface input node.

Transforming State Machines State machines are transformed into an
enum for the states, an enum for the events, a struct that holds the state
machine’s data (variables, current state), and a function that implements the
behavior. The function takes two arguments: the struct that represents a
state machine instance as well as the event the instance is supposed to consume
(events can have arguments, but this is not discussed for reasons of simplicity).
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Fig. 14 Transformation macros are used to replace dummy nodes (such as the reference
e1) with the code created by the transformation based on the input node. Reference macros
(->$) are used to wire up references, and $COPY_SRC$ macros are used to replace entire nodes.
Behind each macro is an expression that computes the node that should be used to replace
the dummy node. For example, behind the $COPY_SRC$[theStatemachine] is an expression
that returns the variable that holds the instance data for the current state machine instance.
We describe more details about transformations in the running text.

The trigger statement, which fires an event into a state machine instance
(e.g. trigger(aStatemachineInstance, anEvent)), must be transformed to
a call to this function, supplying the struct instance that corresponds to the
instance of the triggered state machine, plus the enum literal that represents
the event. Figure Fig. 14 shows the respective transformation rule. It has three
parts: the part above the –> specifies that the transformation rule applies to
instances of TriggerSMStatement. The part enclosed in <TF .. TF> is called
the template fragment. Its content replaces the TriggerSMStatement during
execution of the transformation. The rest of the code is used for scaffolding.

Scaffolding is necessary for the following reasons: as we have mentioned
above, the code inside the template fragment must be valid C code, even in
the template (this is why MPS can provide IDE support for the code in the
template). So to be able to generate a reference, the template must contain a
node that can be referenced by the reference, even if we do not intend to gen-
erate the reference target, because it already exists in the to-be-transformed
tree. So, for example, to be able to write a function call in the template, we
first have to have a function (smExecuteFunction), to be able to reference
an enum literal, we first need an enum, and so on. During the execution of
the transformation, references are ”rewired” using the ->$ macro. Its embed-
ded expression returns the target for the reference, typically an element that
already exists (or has been created by the transformation) in the output tree.

In our case we want to generate a call to a function with two arguments,
so the scaffolding has to contain a function with these two arguments as well
— and they must have the correct type to avoid getting type errors in the
template. Please see the caption of Fig. 14 for further details.

The transformation rule we have seen above is an example of a reduction
rule. Reduction rules replace the input node with the rule’s result. MPS also
supports various other kinds of rules, including conditional root rules (which
create a new node without a specific input element) and weaving rules (which
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create a new node at a specified location different from the input node’s loca-
tion in the output tree).

Transforming a Mock Component Mock components are a special kind
of component which declaratively express the behavior they expect to see on
their provided ports in the context of a test case [70]. Here is an example:

mock component PasswordMock {
total no. of calls is 3
sequence {
step 0: energyDataAccess.hasMeterStatus return false;

assert 0: parameter expectedStatus: expectedStatus == PASSWORD_OK
step 1: energyDataAccess.hasMeterStatus return false;
step 2: setPasswordHandler.processCommand return true;

These expectations are transformed into implementations of the component
operations that track invocations and check whether the expectations are met.
For this to work, the mock-to-component transformation has to run before
the component-to-C transformation. To achieve this, the mock-to-components
generator specifies a strictly before constraint relative to the components-
to-C generator. The following code shows the overall mapping configuration
for a progam that uses mocks, components, unit tests, and, of course, C.

[1] core.removeCommentedCode
[2] ext.components.mock
[3] ext.components.main, core.unittest
[4] core.ctext

Based on the specified relative priorities, MPS has computed an overall order
comprising four separate phases. In phase 1, we remove commented code (since
it should not end up in the resulting C text file). In phase 2 we run the mock
component transformation. As expected, it runs before the components-to-
C transformation, which runs in phase 3, together with the unit-test-to-C
transformation. Phase 4 finally generates the resulting C text.

Implememting Variants Implementing product line variability is a differ-
ent kind of transformation in that it is generic with regard to the transformed
languages (presence conditions can be attached to any arbitrary program ele-
ment). If the presence condition is false for the selected configuration during
transformation, the respective program element has to be removed from the
program (see the affectedElement.delete in the code below). Since this is
a generic transformation, it is implemented as a transformation script. In con-
trast to the template-based approach shown above, a transformation script
uses MPS’ node API directly to transform the AST.

mapping script removePLEStuff pre-process input model, top-priority group: true
(model, genContext, operationContext)->void {
node<...> config = // the configuration that specifies which variant to generate
foreach pc in model.nodes<PresenceCondidtion> {
if (!(pc.condition.isSelectedInTransformationConfiguration(config))) {
node<> affectedElement = pc.parent;
affectedElement.delete; } } }

The script works as follows. First, it finds the configuration element that speci-
fies which variant should be generated. It then finds all PresenceCondidtions
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in a model and evaluates each of them relative to the selected variant con-
figuration. If a presence condition evaluates to false, the script removes the
element to which the presence condition is annotated — the parent of the pres-
ence condition. Notice how the transformation is put into the top-priority
group, which means it runs in the first phase of the transformation without
explicitly specifying priorities relative to other generators. This is important,
because we may not even know which other transformations are executed for
the program, so we cannot explicitly declare dependencies relative to them.

4.4 Tool Extensions

While we emphasize language extension in this paper because it distinguishes
our approach, tool extensibility is also important. There are two dimensions.

The first one is tool extensibility relative to language extensions. The IDE
features for a given language have to be extended along with language exten-
sions. In MPS this is mostly automatic: as you define a language extension, you
automatically get syntax coloring, error annotation and code completion. For
additional features such as refactorings, the customization of syntax highlight-
ing or debugging, custom APIs exist. The second dimension is tool extensibility
independent of language extensions. For example, one might want to integrate
a view to show graphical overviews of the programs, or to show the results of
some analysis. MPS provides a plugin API do define such tool extensions. As
an example, the integration of NuSMV comprises the following steps:

1. The input language for NuSMV is implemented in MPS.
2. A transformation is developed that maps state machines marked as verifi-

able to the corresponding NuSMV program.
3. A new window is added to MPS that shows the the verification result.
4. An action Verify is contributed to the context menu of state machines.

When executed, the action runs NuSMV on the generated input program,
parses the textual result, and populates the table in the new window.

Steps 1 and 2 are no different from any other language or transformation
definitions and will not be discussed any further. We focus on 3 and 4.

Additional windows (such as the tables in the right half of Fig. 6) can be
defined as part of a language. If a program uses that language, the additional
window is available. A window is essentially a Java class that has a predefined
structure and specifies a caption, an icon, and a position in the UI frame. A
window also defines a set of predefined methods, the most important of which
creates the Java Swing-based UI. Finally, MPS also supports actions, which
define UI aspects (mnemonic, caption, icon, menu location) as well as the code
to be executed (running NuSMV and populating the UI in our example).

5 Discussion and Lessons Learned

In this section we address the research questions stated in Section 1 and discuss
our experience with developing mbeddr from two perspectives: the usefulness
of MPS and language workbenches for building customized domain specific
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tools (tool developer perspective) and the implications of the mbeddr stack
for the embedded software developers (end user perspective). The latter is
important to validate the overall approach. This section relies heavily on the
experiences from the first commercial use of mbeddr, a project that develops
the software for a 3-phase smart meter. A smart meter is an electrical meter
that continuously records the consumption of electric power in a home and
sends the data back to the utility for monitoring and billing. The software
comprises ca. 20.000 lines of mbeddr code, has several time-sensitive parts
that require a low-overhead implementation and will have to be certified by
the future operator. This leads to an emphasis on testing, formal analyses and
requirements tracing. The software exploits existing code in the form of header
files, libraries and code snippets. While the project is still going on, we can
already report some experiences and draw some conclusions.

5.1 Addressing Q1: Feasibility of building sophisticated IDEs with MPS

Tool Scalability The scalability of MPS as a language workbench can
be measured in different ways including its ability to manage the complexity
associated with large or many languages, the learning curve, working in teams
and in terms of supported language sizes and tool performance. In this section
we look at language size and tool performance. The others are discussed below.

Typically, lines of code (LOC) are used to describe the size of a program.
In a projectional editor like MPS, a ”line” is not necessarily meaningful. How-
ever, it is feasible to estimate the equivalent LOC number by counting the
occurrences of certain language definition ingredients and associating a LOC-
factor with them. For example, the statements that are used in the imperative
parts of a language definition (e.g. in scopes or type system rules) have a LOC
factor of 1.2 since many statements embed higher order functions and would
span more than one line. 1.2 turned out to be a reasonable average. Another
example for a LOC-factor is an intention: an intention declares the concept it
applies to, a label and an applicability condition. These are one line each. It
also contains a number of statements which are counted separately, as state-
ments. Hence, the LOC factor for intentions is 3 (a similar argument holds
for constraints or reference scopes). As a final example, consider editor cells.
An editor definition contains a large number of cells, and we found that on
average, 4 occur per ”line” of editor definition, leading to a LOC-factor of 0.25.
The third column of the table in Fig. 15 shows the factors for all kinds of
ingredients involved in language definition. While this approach is an approx-
imation, we have made several manual checks and found that it is accurate
enough to get an feel for the size of various language implementations.

Fig. 15 shows the result of the LOC count for the mbeddr core, i.e. C itself
plus unit test support, decision tables and build/make integration. According
to the metric discussed above, the core comprises about 8,640 lines of code.
This includes all aspects of language definition (including syntax, type system,
to-text-generators) as well as the IDE (code completion, syntax highlighting,
quick fixes). Using the same metric, the components extension (interfaces,
components, pre- and post-conditions, support for mock components and a
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generator back to plain C) is ca. 3,000 LOC. The state machines extension is
ca. 1,000 LOC. We consider these numbers an indication that MPS supports
very concise definition of languages. While we have not implemented C with
other language workbenches, some of the authors have experience with other
tools. For example, implementing C and its IDE with Xtext would require
significantly more code, since many language aspects are not supported first
class (e.g., type systems) or must be implemented using much more verbose
Java code that relies on Xtext APIs.

Element Count LOC-Factor LOC-Equivalent

Language Concepts 260 3 780
Property Declarations 47 1 47
Link Declarations 156 1 156
Editor Cells 841 0.25 210
Reference Constraints 21 2 42
Property Constraints 26 2 52
Behavior Methods 299 1 299
Type System Rules 148 1 148
Generation Rules 57 10 570
Statements 4,919 1.2 5,903
Intentions 47 3 141
Text Generators 103 2 206
Total Approximate LOC: 8,640

Fig. 15 We count various language definition elements and then use a factor to translate
them into equivalent lines of code.

Efforts The core C implementation has been developed in ca. four person
months divided between three people, resulting in roughly 2,200 LOC per per-
son month. Extrapolated to a year, this would be 26,400 LOC per person.
According to McConnell26, in a project up to 10,000 LOC, a developer can
typically do between 2,000 and 25,000 LOC per year, so we are just slightly
above the typical range. The state machines extension (including the generator
and the integration with the NuSMV model checker) and components exten-
sion (including a generator to C with polymorphic and static wiring options,
testing support, pre- and post conditions and protocol state machines) have
both been implemented in about a month. The unit testing extension and the
support for decision tables have been implemented in a few days.

MPS Learning Curve MPS is a comprehensive environment for building
and composing languages. In addition to defining the structure, syntax and
an IDE, it also supports advanced features such as type systems, refactorings
and debuggers. Consequently, the learning curve for the language developer
(not the end user/C programmer) is significant. Our experience with several
novice MPS language developers is that it takes around four weeks of full time
training and practice to become a decent MPS language implementor. With
improved documentation and some cleanup of MPS itself, this effort may be
reduced to three weeks, but it is still a significant investment.

26 http://codinghorror.com/blog/2006/07/diseconomies-of-
scale-and-lines-of-code.html

http://codinghorror.com/blog/2006/07/diseconomies-of-
scale-and-lines-of-code.html
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However, once a developer has mastered the learning curve, MPS scales
well: increasingly large and complex languages are not overly more complex
to build. This is in sharp contrast to our experiences with other, parser-based
language workbenches, where, with increasing language complexity, the acci-
dental complexity of the language implementation increases significantly.

5.2 Addressing Q2: Language Modularity for non-trivial Use Cases

Language modularity, extension and composition is central to mbeddr in two
ways (Q2). First it enables third parties to create C extensions without agree-
ing on how to invasively change C. Second, modular language extension also
helps scale the system from the perspective of the language engineer. At this
point, mbeddr consists of 51 separate languages with clear dependencies on
each other. Putting all the language concepts from these languages into one
single language would quickly become unmaintainable.

The integration of formal verification, a problem typically associated with
tool extension and integration, has been reduced mostly to a language integra-
tion problem. We implemented the NuSMV and Yices input languages in MPS,
reusing part of the C expression language. Then we implemented a transfor-
mation from domain-specific abstractions to these input languages. Only the
execution of the verification tool, the lifting of the verification results and their
representation in the UI remained as a tool integration problem. This approach
substantially reduced the effort for the integration.

While users can make use of the existing extensions that come with mbeddr
(see next subsection), they are encouraged to build their own modular exten-
sions specific to their system context. So far we made use of this possibility in
the Smart Meter project in the following ways:

– Units: A major part of the Smart Meter application logic performs compu-
tations on physical quantities (time [s], current [A] or voltage [V]). We have
created a language extension that adds units to types and literals (as in
int8/V/ voltage = 10V; see also the left side of Fig. 8). The type system
has been extended with unit checks and computations (for example, adding
V and A results in a type error and multiplying V and A results in W). The
benefits of this extensions are mostly in type checking, but some conver-
sions are also generated into the resulting C code. Using types with units
also improves the readability and comprehensibility of the code (important
in Smart Meter, which relies on a significant existing code base). While
still a modular extension, this extension is not specific to the Smart Meter
project and has since been migrated into the mbeddr default extensions.

– Registers: Our target processor has special-purpose registers: when a value
is written to such a register, a hardware-implemented computation is au-
tomatically triggered based on the value supplied by the programmer. The
result is then stored in the register. If we want to run code that works
with these registers on the PC for testing, we face two problems: first, the
header files that define the addresses of the registers are not valid for the
PC’s processor. Second, there are no special-purpose registers on the PC,
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so no automatic computations would be triggered. We solved this problem
with a language extension that allows us to define registers first class and
access them from C code (see code below). The extension also supports
specifying an expression that performs the computation. When the code
is translated for the real device, the real registers are accessed using the
processor header files. In testing we use generated structs to hold the reg-
ister data and insert the expression into the code that updates the struct,
simulating the hardware-based computation.

exported register8 ADC10CTL0 compute as val * 1000

void calculateAndStore( int8 value ) {
int8 result = // some calculation with value
ADC10CTL0 = result; // actually stores result * 1000}

– Interrupts: Many aspects of the Smart Meter system are driven by inter-
rupts. To integrate the component-based architecture used in Smart Meter
with interrupts, it is necessary to be able to trigger component runnables
(methods) via an interrupt. To this end, we have implemented a language
extension that allows us to declare interrupts. In addition, the extension
provides runnable triggers that express that a runnable is triggered by an
interrupt. The following example declares to interrupts (left) and the com-
ponent runnable interruptHandler (right) is declared to be triggered by
an interrupt.

module Processor { exported component RTCImpl {
exported interrupt USCI_A1 void interruptHandler() <- interrupt {
exported interrupt RTC } hw->pRTCPS1CTL &= ~RT1PSIFG; } }

Note that we do not specify which interrupt triggers the runnable because
this is done as part of component instantiation (not shown). There, we
also check that each interrupt-triggered runnable has at least one interrupt
assigned. In addition, for testing purposes on the PC, we have language
constructs that simulate the occurrence of an interrupt: the test driver
simulates the triggering of interrupts based on a test-specified schedule
and checks whether the system reacts correctly.

Based on these extensions, we can draw preliminary conclusions regarding the
feasibility of incremental, modular language extension:

– Building a language extension should not require changes to the base lan-
guage. This, in turn, requires that the base language is built with extension
in mind to some degree. Just like in OO programming, only things of a cer-
tain granularity can be extended or overwritten (in OO you cannot override
lines 10 to 12 in a 20 line method). In addition to being useful in their own
right (see below), the implementation of the default extensions also served
to verify that the C core language is in fact extensible and the extensions for
Smart Meter further demonstrate this point. The registers extension dis-
cussed above requires new top level module contents (the register definition
themselves), new expressions (for reading and writing into the registers),
and embedding expressions into new contexts (the code that simulates the
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hardware computation when registers are written). All of those have been
built without changing C. Similarly, the interrupt-based runnable triggers
have been hooked into the generic trigger facility that is part of the com-
ponents language. The latter is an example of where the base language
(the components extension in this case) has been built with extensibility
in mind: an abstract concept AbstractTrigger had been defined, which
has been extended to support interrupts. Even the units extension, which
provides new types, new literals, overloaded typing rules for operators and
some adapted code generators has been developed in a modular way, with-
out changing the C base language27.

– Once a language is designed in a reasonable way (as discussed in the pre-
vious item), the language (or parts of it) should be reusable in contexts
that had not been specifically anticipated in advance. Embedding state ma-
chines into components (discussed at the end of Section 4.1) is an example.
We also reuse the C expression language inside the guard conditions in a
state machine’s transitions, where we use constraints to prevent the use
of those C expression that are not allowed inside transitions (for example,
references to global variables). We also used decision tables in components.
The Smart Meter system contains more examples: expressions have been
embedded in the register definition for simulating the hardware behavior,
and types with measurement units have been used in decision tables. Again,
no change to the existing languages has been necessary.

– Ideally, independently developed extensions should not interact with each
other in unexpected ways. We have not seen such interactions so far, in
the default extensions or in Smart Meter. While there is no automatic way
to detect such interactions or declare incompatibility between languages or
extensions, the following steps can be taken to minimize the risk of unex-
pected interactions. Names of generated C elements (variables, functions)
should be qualified to make sure that no name clashes occur. Also, an ex-
tension should avoid making specific assumptions about or changing the
environment in which it is used. For example, it is a bad idea for a new
Statement to change the return type of the containing function during
transformation because two such badly designed statements could not be
used together in a single function (they may require different return types
for that function). Finally, in traditional parser-based systems, there may
be syntactic interactions between independently developed extensions. As
we have discussed at length, this never happens in MPS.

The efforts are also interesting. The registers and interrupt extensions have
been built in 3 hours each. The extension for types with physical units took
about 4 days. In the context of a development project which, like Smart Meter,
is planned to run a few person years, these efforts can easily be absorbed and
well worth the effort in terms of the improved safety and testability.

27 During the implementation of the default extensions we found a few bugs in the C base
language that prevented modular extension. These were not conceptual problems, but real
bugs. They have been fixed, so C can now be extended meaningfully in a modular way.
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5.3 Addressing Q3: Relevancy and Usefulness for End Users

Usefulness of the existing Extensions While the ability to simply de-
fine extensions specific to a platform, architecture or system is paramount to
mbeddr, it is also useful to evaluate whether the existing default extensions
are useful in practice. If so, this proves that the (relatively low) efforts in-
vested into implementing those extensions leads to tools that are relevant in
real-world contexts. In Smart Meter, we use the following default extensions:

– Components: We use mbeddr’s components to encapsulate the hardware
dependent parts. By exchanging the hardware-dependent components with
stubs and mocks that provide the same interfaces, we can run integration
tests on a PC without using the actual target device. As a side effect we
can now debug the software on a normal PC, using the mbeddr debugger.
While this does not cover all potential test and debugging scenarios, a
significant share of the application logic can be handled this way.

– State Machines: The smart meter communicates with its environment via
several different protocols. So far, one of these protocols has been refactored
to use a state machine. This has proven to be much more readable than
the original C code. We combined components and state machines which
allowed us to decouple message assembly and parsing from the application
logic in the server component.

– Requirements Tracing: Smart Meter also make use of requirements traces.
During the upcoming certification process, these will be extremely useful
for tracking if and how the customer requirements have been implemented.
Because of their orthogonal nature, the traces can be attached to the new
language concepts specifically developed for Smart Meter.

– Analyses: We use decision tables to replace nested if statements and used
the completeness and determinism analysis to uncover bugs in the code
base. We also model checked the protocol state machines. This uncovered
bugs introduced when refactoring the protocol implementation from C to
state machines. We plan to extend the existing model checking support
to be able to check the compatibility of two or more collaborating state
machines, which is relevant for the client and server parts of the protocols.

Summing up, the mbeddr default extensions have proven extremely useful in
the development of Smart Meter. The fact that the extensions are directly
integrated into C (as opposed to the classical approach of using external DSLs
or separate modeling tools) reduces the hurdle of using higher-level extensions
and removes any potential mismatch between DSL code and C code.

Scalability of mbeddr Let us first look at the scalability regarding the
ability to work with large or many programs. We have performed scalability
tests and found that mbeddr scales to at least the equivalent of 100,000 lines
of C code in the developed system. These tests were based on automatically
generated sample code and measured editor responsiveness and transforma-
tion times. While there are certainly systems that are substantially larger, a
significant share of embedded software is below this limit and can be addressed
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with mbeddr. For example, the Smart Meter system is 20.000 lines of mbeddr
code. Since there is a factor of ca. 1.5 between the mbeddr code and generated
C, the Smart Meter system corresponds to ca. 30.000 lines of C.

One criticism that has been used against language extension is that the lan-
guage will grow large and that it is hard for users to learn all its constructs. In
our experience, this is not a problem in mbeddr for the following three reasons:
first, the extensions provide linguistic abstractions for concepts that are well
known to the users: state-based behavior, interfaces and components or test
cases. Second, the additional language features are easily discoverable because
of the IDE support. Third, and most important, these extensions are modu-
larized, and any particular end user will only use those extensions that are
relevant to whatever his current program addresses. This avoids overwhelming
the user with too much ”stuff” at a time.

Usability of Projectional Editing As we have seen, projectional editing
has advantages: it contributes to enabling the modularization, extension and
composition of languages, it supports mixing textual and non-textual nota-
tions (decision tables), allows annotations of programs (as in product line and
traceability support) and it supports partial projection of programs (as in the
product line support). However, projectional editing also has drawbacks.

First, while MPS’ user experience comes very close to real text editing
(see Section 4.2), there are some idiosyncrasies users have to get used to (e.g.
selecting parts of programs). Experience shows that after a few days the editor
is not perceived as a disadvantage anymore, some people actually prefer it over
normal text editors. However, users have to get through the first few days of
getting used to the editor. We expect this to be less of an issue in the future
as the MPS team is working on solving the few remaining issues.

Second, a few things are just not possible with projectional editors. One of
them is putting comments around certain code segments. Commenting is eas-
ily supported for entire subtrees (MPS provides a way of suppressing errors in
commented code, override the syntax coloring and prevent elements from be-
ing referenced). However, cross-tree comments, as in boolean b = true /*||
false*/; are not possible since the true node is a child of the OrExpression.
It remains to be seen whether this is a significant issue in practice.

Third, since models are not stored as readable text but rather as an XML
document, infrastructure integration can be challenging. MPS provides an in-
tegration with mainstream version control systems including CVS, Subversion
and git, and also supports diff/merge based on the projected syntax. However,
the projected diff/merge is only supported inside MPS, so a diff shown in the
browser (for example as part of the gerrit code review tool) will show the XML
and is hence not useful. We have a lot of experience with using MPS in a team
of eight people in the research project during language development. Except
for a few bugs in MPS (fixed in the meantime), teamwork works well. Since
end users use the same approach, we assume that this will be the case as well
for end users. The Smart Meter team only has three developers, so we cannot
yet draw significant experiences from this project.
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Interoperability with Textual Code Additional effort is required to
integrate with existing legacy code. As a consequence of the projectional editor,
we have to parse the C text (with an existing parser) and construct the MPS
AST. mbeddr provides an importer for header files as a means of connecting to
existing libraries. However, mostly as a consequence of C’s preprocessor which
allows all kinds of mischief to be done to otherwise well-structured C code, this
importer is not trivial. For example, we currently cannot import all alternatives
expressed by #ifdefs. Users have to specify a specific configuration to be
imported (in the future, we will support importing of all options by mapping
the #ifdefs to mbeddr’s product line variability mechanism). Also, header
files often contain platform-specific keywords or macros. Since they are not
supported by the mbeddr C implementation, these have to be removed before
they can be imported. The header importer provides a regular expression-
based facility to remove these platform specifics before the import. The Smart
Meter project, which is heavily based on an existing code base, also drives
the need for a complete source code importer (including .c files, and not just
header files), which we are currently in the process of developing.

The parser behind this importer will also be integrated into MPS’ paste
handler, so textual C source can be pasted into the projectional editor. While
copy and pasting from MPS to text works by default (if the syntax of the code
is textual), the reverse is not true and has to be built specifically.

The integration of legacy code describe in this paragraph is clearly a dis-
advantage of projectional editing. However, because of the advantages of pro-
jectional editors discussed in this paper, we feel that it is a good trade-off.

Leaky Abstraction A fundamental problem with higher-level abstractions
is that in case of an error (or unacceptable performance or resource consump-
tion), a user may have to deal with the underlying implementation. However,
the user may not understand this implementation, because he did not write
the code and had previously just relied on the higher-level abstraction. This
problem exists for macros, libraries and also for mbeddr’s language extensions.
We try to limit this problem as far as possible. Primarily we make sure that
every valid extension-level program leads to a valid C program by relying on
automated unit tests and (initially maybe overly) strict type system rules and
constraints. mbeddr also provides an extensible debugger that lets users debug
programs at the extension level and a tool to find the source of a log statement
on the extension level based on the log output. As a last resort, MPS provides a
tracing facility where low-level code is traced back through the transformation
process to its high-level source. Based on the experience with Smart Meter,
we feel that we have addressed the issue to a degree that works for users.

Runtime Overhead Generating code from higher-level abstractions may
introduce performance and resource consumption overhead. While we have not
yet performed a systematic analysis of the overhead incurred by the mbeddr
extensions, it is low enough to run the Smart Meter system on the hardware
intended for it. Some extensions (registers, interrupts or physical units) have
no runtime overhead at all since they have no representation in the generated
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C code. Others, such as the components, incur a very small overhead as a con-
sequence of indirections from function pointers. We will conduct a systematic
investigation in the future.

6 Related Work

In this section we discuss the related work regarding the core contribution of
this paper: language engineering, language workbenches and extensible IDEs.
Section 1.2 has already addressed related work regarding embedded systems.

Parsers and Grammars In [44] Kats, Visser and Wachsmut describe the
trade-offs with non-declarative grammars. Grammar formalisms that cover
only subsets of context-free grammars are not closed under composition and
composed grammars are likely to be outside of the respective grammar class.
Composition (without invasive change) is prohibited. Formalisms that imple-
ment full context-free grammars avoid this problem and compose much better.

Most mainstream parser generators (such as ANTLR [61]) do not support
the full set of context-free grammars and hence face problems with composi-
tion. In contrast, the Syntax Definition Formalism [35] (SDF) does support
full context-free grammars. Based on a scannerless GLR parser, it parses to-
kens and characters in a context-aware fashion. There will be no ambiguities
if grammars are composed that both define the same token or production
in different contexts. This allows, for example, to embed SQL into Java (as
Bravenboer et al. discuss in [50]). However, if the same syntactic form is used
by the composed grammars in the same location, manual disambiguation be-
comes necessary. In SDF, disambiguation is implemented via quotations and
antiquotations (”escape characters”) which are defined in a third grammar
that defines the composition of two other independent grammars [10]. The
SILVER/COPPER system described by van Wyk in [76] instead uses disam-
biguation functions written specifically for each combination of ambiguously
composed grammars. In MPS disambiguation is never necessary — in the
worst case, the user makes the disambiguating decision by picking the cor-
rect concept from the code completion menu. Given a set of extensions for a
language, SILVER/COPPER allows users to include a subset of these exten-
sions into a program as needed (demonstrated for Java in AbleJ [77] and for
SPIN/Promela in AbleP [51]). A similar approach is discussed for an SDF-
based system in [11]. However, ad-hoc inclusion only works as long as the set
of included extensions (presumably developed independently from each other)
are not ambiguous with regards to each other. Otherwise disambiguation has
to be used. Again, MPS does not have this limitation.

Polyglot, an extensible compiler framework for Java [58] also uses an ex-
tensible grammar formalism and parser to supports adding, modifying or re-
moving productions and symbols defined in a base grammar. However, since
Polyglot uses the LALR subset of context-free grammars, users must make
sure manually that the base language and the extension remains LALR.

Monticore is another parser-based tool that generates parsers, metamodels,
and editors based on extended grammar. Languages can extend each other and
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can be embedded within each other [47]. An important idea is the ability to
not regenerate the parsers or any of the related tools for a composed language.
However, ambiguities have to be avoided manually.

Macro systems support defining additional syntax for existing languages.
The new syntax is reduced in place to valid base language code. The defini-
tion of the syntax and the transformation is expressed with special host lan-
guage constructs. Macro systems differ with regard to the degree of freedom
they provide for the extension syntax, and whether they support extensions of
type systems and IDEs. The most primitive macro system is the C preproces-
sor which performs pure text replacement during macro expansion. The Lisp
macro system is more powerful because it is aware of the syntactic structure
of Lisp (see Guy Steele’s Growing a Language keynote [41]). An example of a
macro system with limited syntactic freedom is the Java Syntactic Extender [4]
where each macro has to begin with a unique keyword, and only a limited set of
syntactic forms is supported. In OpenJava [69], the locations where macros can
be added is limited. More fine-grained extensions, such as new operators, are
not possible. Some of the C extensions developed in mbeddr are macro-style
(they are reduced in place to the corresponding C code). However, MPS en-
forces no limitations on the granularity, syntax or location of such extensions,
and supports extending the type system and the IDE.

In Section 4.3 we mentioned that MPS’ template language provides IDE
support for the target language in the template. In traditional text-generation
template languages this is not possible because it requires support for language
composition: the target language must be embedded in the template language.
However, there are examples of template languages that support this, built on
top of modular grammar formalisms. An example is the Repleo template lan-
guage [2] which is built on SDF. However, as explained in the discussion on
SDF above, SDF requires the definition of an additional grammar that defines
how the host grammar (template language in this case) and the embedded
grammar (target language) fit together (quotations). In MPS, any target lan-
guage can be marked up with template annotations. No separate language has
to be defined for the combination of template and target language.

Projectional Editing In this section we discuss other tools, that, like MPS,
are based on a projectional editor. We focus on flexibility and in particular on
usability, since we think that MPS is groundbreaking in this space.

An early example of a projectional editor is the Incremental Programming
Environment (IPE, [53]). It provides a projectional editor and an integrated
incremental compiler. It supports the definition of several notations for the
same program (supported by MPS from late 2012) as well as partial projec-
tions. However, the projectional editor forces users to build the program tree
top-down. For example, to enter 2+3, users first have to enter the + and then
fill in the two arguments. This is tedious and forces users to be aware of the
language structure at all times. In contrast, as we have seen in Section 4.2,
MPS supports editing that resembles text editing, particularly for expressions.
IPE also does not address language modularity. In fact it comes with a fixed,
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C-like language and does not have a built-in facility to define new languages.
Another projectional system is GANDALF [57]. Its ALOEGEN component
generates projectional editors from a language specification. It has the same
usability problems as IPE. This is nicely expressed in [62]: Program editing will
be considerably slower than normal keyboard entry although actual time spent
programming non-trivial programs should be reduced due to reduced error rates.

The Synthesizer Generator described in [65] also supports projectional edit-
ing. However, at the fine-grained expression level, textual input and parsing is
used. This destroys many of the advantages of projectional editing in the first
place, because simple language composition at the expression level is prohib-
ited. We have seen in this paper that extensions of expressions are particularly
important to tightly integrate an embedded language with its host language.
MPS does not use this parsing ”trick”, and instead supports projectional edit-
ing also on expression level, with convenient editing gestures. The Intentional
Domain Workbench [68] is another contemporary projectional editor that has
been used in real projects. While not too much has been published about it, it
is well-known that it supports mixing graphical, tabular and textual notations.

Modular Compilers As we have seen in this paper, language extension
does not just include modular concrete syntax. It also requires the extension
or composition of static semantics and transformations.

Many systems (including SILVER [76] mentioned above, JastAdd [34] and
LISA [54]) describe static semantics using attribute grammars. These associate
attributes with AST elements. An attribute can hold arbitrary data about the
element (such as its type). Forwarding [78] is a mechanism that improves the
modularity of attribute grammars by delegating the look-up of an attribute
value to another element. While MPS’ type system can be seen as associating
a type attribute with AST elements using the typeof function, it is different
from attribute grammars. Attribute values are calculated by explicitly referring
to the values of other attributes, often recursively. MPS’ type system rules are
declarative. Developers specify typing rules for language concepts and MPS
”instantiates” each rule for each AST element. A solver then solves all type
equations in that AST. This way, the typing rules of elements contributed by
language extensions can implicitly affect the overall typing of the program.

For language extension the execution semantics is usually defined by a
transformation to the base language. In [76], van Wyk shows that this is valid
only if the changes to the AST are local, avoiding unintended interactions be-
tween independently developed extensions used in the same program. In MPS
such local changes are performed with reduction rules. In our experience it is
also feasible to add additional elements to the AST in select places. In MPS,
this is achieved using weaving rules. However, in both cases (local reduction
and selective adding) there is no way to detect in advance whether using two
extensions in the same program will conflict semantically or not.

As mentioned before, the Stratego [9] term rewriting-based transformation
engine separates the transformations themselves from the orchestration of sets
of transformations. The latter is achieved with several predefined strategies
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that can be parametrized with the actual transformations. This way, the same
transformations can be reused in different contexts. The facility can also be
used to define the global order of independently developed transformations.

Extensible Tools and Language Workbenches While projectional tools
always requires an IDE for editing programs, textual languages can be used
with any text editor. We have already discussed modular languages above, and
we discuss modular IDEs and full-blown language workbenches here.

Early examples include the Synthesizer Generator [65] (mentioned above)
and the Meta Environment [45] which provides an editor for languages defined
via ASF+SDF. Rascal [46] and Spoofax [43] provide Eclipse-based IDE sup-
port for SDF-based languages. In both cases the IDE support for composed
languages is still limited (for example, at the time of this writing, Spoofax only
provides syntax highlighting for an embedded language, but no code comple-
tion), but improving rapidly. To implement semantics, Rascal uses a Java-
like language that has been extended with features for program construction,
transformation and analysis. Spoofax uses term rewriting based on Stratego [9]
which supports transformation composition based on higher-order strategies.
An interesting tool is SugarJ [23] also based on SDF, which supports library
based language extension (which can be seen as a sophisticated macro system).
Spoofax-based IDE support is available as well [22].

LISA [54] (mentioned earlier) supports the definition of language syntax
and semantics (via attribute grammars) in one integrated specification lan-
guage. It then derives, among other things, a syntax-aware text editor for the
language, as well as various graphical and structural viewing and editing fa-
cilities. Users can use inheritance and aspect-orientation to define extended
languages. The use of this approach for incremental language development is
detailed in [55]. However, users have to make sure manually that sub-grammars
remain unambiguous with respect to the base grammar. The same is true for
the combination of independently developed grammars.

Eclipse Xtext28 generates sophisticated text editors from an EBNF-like
language specification. Syntactic composition is limited since Xtext is based
on ANTLR [61] which is a two phase LL(k) parser. It is possible for a language
to extend one other language. Concepts from the base language can be used
in the sub-language and it is possible to redefine grammar rules defined in the
base language. Combination of independently defined extensions or Embedding
is not supported. Xtext’s abstract syntax is based on EMF Ecore29, so it can be
used together with any EMF-based model transformation and code generation
tool (such as Xtend, Xpand, ATL, and Acceleo, all part of Eclipse Modeling30).
Static semantics is based on constraints written in Java or on third-party
frameworks that support declarative description of type systems such as XTS31

28 http://eclipse.org/Xtext
29 http://eclipse.org/emf
30 http://eclipse.org/modeling
31 http://code.google.com/a/eclipselabs.org/p/xtext-typesystem

http://eclipse.org/Xtext
http://eclipse.org/emf
http://eclipse.org/modeling
http://code.google.com/a/eclipselabs.org/p/xtext-typesystem


mbeddr: Instantiating a Language Workbench in the Embedded Software Domain 45

or XSemantics32. Xtext comes with Xbase, an expression language that can be
used as the basis for custom DSL [21]. Xbase also comes with a framework that
simplifies the creation of interpreters and compilers for Xbase-based DSLs.

An interesting comparison can be made with the Renggli et al.’s Helvetia
[64]. It supports language embedding and extension of Smalltalk using ho-
mogeneous extension, which means that the host language (Smalltalk) is also
used for defining the extensions. In contrast to macro systems, it can embed
languages with full-blown grammars. The authors argue that the approach is
independent of the host language and could be used with other host languages
as well. While this is true in principle, the implementation strategy heavily re-
lies on the unique aspects of the Smalltalk system which are not available for
other languages, and in particular, not for C. Also, since extensions are defined
in the host language, the complete implementation would have to be redone
if the approach were used with another language. This is particularly true for
IDE support, where the Smalltalk IDE is extended using this IDE’s APIs.
mbeddr uses a heterogeneous approach which does not have these limitations:
MPS provides a language-agnostic framework for language and IDE extension
that can be used with any language, once the language is implemented in MPS.

Cedalion [18] is a host language for defining internal DSLs, based on a
projectional editor and logic programming semantics. Both Cedalion and lan-
guage workbenches such as MPS aim at combining the best of both worlds
from internal DSLs (combination and extension of languages, integration with
a host language) and external DSLs (static validation, IDE support, flexible
syntax). Cedalion starts out from internal DSLs and adds static validation and
projectional editing, the latter avoiding ambiguities resulting from combined
syntaxes. Language workbenches start from external DSLs and add modu-
larization, and, as a consequence of implementing GPLs with the same tool,
optional tight integration with GPL host languages. We could not use Cedalion
for mbeddr though, since we implemented our own base language (C), and the
logic-based semantics would not have been a good fit.

An older line of work is focused on meta-CASE tools that aim at rapid de-
velopment of CASE tools in order to support customised development method-
ologies [25]. They support specifying a meta-model and a typically visual no-
tation, editors are then synthesized. Tools that implement this approach range
from academic tools such as Pounamu [31], to industry quality tools based on
Eclipse [30]. MetaEdit+ [71] is one of the most well known tools used in this
space. It was and is used in several industry projects. The focus of mbeddr is
different. We focus on mixed-notation languages and on the incremental exten-
sion of languages, general-purpose and domain-specific. This goes far beyond
the creation of (often relatively high-level) graphical modeling languages.

Domain-Specific Tools based on Language Workbenches mbeddr is
an example of instantiating a language workbench to build a domain-specific
tool. While we believe that mbeddr is one of the largest and most sophisticated
examples of this class of tools, it is not the only one. For example, WebDSL [72]

32 http://xsemantics.sourceforge.net

http://xsemantics.sourceforge.net
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is a set of DSLs for building (form-based) web applications based on Spoofax.
Mobl [38] is a similar approach for mobile web applications. WebDSL in partic-
ular has proven to be useful for realistically-sized applications, as exemplified
by the researchr.org website. In contrast to mbeddr, both WebDSL and
Spoofax are not incremental extensions of a general purpose language, and
they are based on a parser-based language workbench. The only other exam-
ple that uses a projectional workbench is Intentional’s Pension Workbench
discussed in a presentation on InfoQ titled Domain Expert DSLs33.

7 Summary, Conclusion and Future Work

Adequate tools can boost the productivity of software development, for exam-
ple in the embedded software domain. Unfortunately, developers often have to
live with off-the-shelf tools and ad-hoc tool chains, since, due to high costs,
building customized tools for small and medium-sized organizations has been
hard to justify and hence often not even considered as a realistic option. In
this paper we investigate the usefulness of extending the languages that un-
derlie such tools as a means of adapting the tool to particular domains. In
particular, we presented our experience with instantiating the MPS language
workbench for building the mbeddr stack in the field of embedded software.
At first we introduced three important concepts of language workbenches: lan-
guage modularity, projectional editing, and multi-stage transformations. We
then presented the mbeddr stack from the perspective of the end-user by il-
lustrating our solutions to four important challenges in embedded software
engineering: separation of specification and implementation, formal verifica-
tion, requirements traceability and product line variability. Next we discussed
how the three pillars of language workbenches have been used to elegantly
implement solutions for these challenges. Finally, we reviewed our experience
in building mbeddr and in using it in the Smart Meter project. Regarding the
questions we posed in the introduction, we conclude:

Q1 It is feasible to build sophisticated domain-specific IDEs based
on MPS as a representative example of projectional language
workbenches. mbeddr is a significantly large and complex system, and it
has been implemented with very reasonable effort (10,000 lines of code for
all of C and its IDE, implemented in four person months). Also, the efforts
for incrementally extending the system for a particular project (as in the
Smart Meter example) can easily be covered by such a project (a few days
have been spent to develop Smart Meter-specific extensions so far). This
shows that building domain-specific tools on top of language workbenches
(as opposed to the current state of the art of developing such tools from
scratch) is a very productive approach, in particular, because tools built
this way can be extended in meaningful ways with reasonable effort.

Q2 Language modularity works for realistically complex use cases.
mbeddr shows that it is feasible to build realistically complex extensions

33 http://www.infoq.com/presentations/DSL-Magnus-Christerson-Henk-Kolk
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at various levels of granularity (down to expressions), addressing syntax,
type systems, transformations and IDE support. As Smart Meter shows,
independently developed extensions can be integrated. The amount of pre-
planning for such extensions is comparable to the pre-planning in OO de-
sign. We have shown several cases where different extensions have been used
together in the same program without pre-planning, and without conflicts.

Q3 The approach leads to tools that are beneficial for real-world
development. Our preliminary experience with Smart Meter shows that
the extensions lead to improvements in productivity as well as comprehen-
sibility and maintainability. They help prevent and uncover bugs, and the
runtime overhead incurred by the abstractions is acceptable. The integrated
formal verifications have been used successfully to find non-trivial bugs as
well. The feedback from those Smart Meter developers that have not been
involved in mbeddr itself leads us to believe that, while projectional editing
takes some time to get used to, the trade-off is worthwhile.

Summing up, we conclude that the approach discussed in this paper makes a
significant contribution to improving the status quo with regard to building
domain-specific development tools from scratch, or to support domain-specific
extension of general-purpose tools.

Our future work involves providing better support for working with legacy
code (one of the challenges of projectional editing), integrating more formal
analyses (further exploiting the benefits of higher levels of abstraction) and
running a larger project in the automotive industry to further evaluate the
acceptance of the approach by end users. We will also make use of MPS’
upcoming support for graphical notations for state machines and data flow di-
agrams. To validate the notion of building domain-specific tools on top of lan-
guage workbenches more generally, mbeddr C could be extended for a domain
other than embedded software, such as financial data analysis, 3D rendering
or scientific data processing. We are currently looking for partners who would
be interested in trying mbeddr in one of these domains.
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