
Requirements as First-Class Citizens:
Integrating Requirements closely with Implementation Artifacts

Markus Voelter
independent/itemis
Stuttgart, Germany
voelter@acm.org

Federico Tomassetti
Politecnico di Torino

Torino, Italy
federico.tomassetti@polito.it

Abstract—Requirements often play second fiddle in software
development projects. The tools for managing requirements
often just support ”numbered lists of prose paragraphs”, and
they don’t integrate well with the tools used for implementing
the system. This leads to all kinds of challenges in terms
of versioning and traceability. Moreover, because they are
mainly prose text, they cannot easily be checked for consistency
and completeness, limiting their usefulness. In this paper we
describe an alternative approach, where requirements are (at
least partially) formalized to support consistency checking,
where parts of requirements can be used directly as the
implementation, and where requirements are managed with the
same tools that are used for system development. The approach
is illustrated with the mbeddr system, a comprehensive IDE
for embedded software development based on an extensible
version of C and domain-specific languages.

I. INTRODUCTION

Collecting, organizing and managing requirements is manda-
tory for life-critical systems, essential for mission-critical
ones and it can still be very useful in the development of
other kinds of systems. Still, it is a cumbersome activity
which either is relentelessly executed with major effort
(typically if the customer or a certification standard/agency
requires it) or it is mainly overlooked, leading to poorly
structured and maintained requirements.

CURRENT STATE In our opinion, one main problem with
the traditional ways to collect and maintain requirements is
the inadequacy of the supporting tools (see also the study
in [5]; we discuss it in Related Work). In some fields,
such as aerospace, automotive or telecoms, requirements are
often collected and managed using MS Office documents
or tools like DOORS, which basically gather paragraphs of
text with no or very limited structure. The relation between
requirements and other artifacts (i.e., implementation code,
tests, etc.) is collected in other documents, or with comments
in the code, requiring manual synchronization with the
actual system implementation. It is not surprising that, when
possible, practitioners try to escape this situation by either
using simpler approaches for requirements elucidation (such
as CRC cards1 and user stories) or completely avoiding it.

1http://en.wikipedia.org/wiki/CRC_Cards

While agile approaches to requirements engineering limit
the burden of managing them, they often do not provide
a maintenance strategy for requirements; instead they are
considered transient artifacts. This is not acceptable in
many domains, where standards require a more structured
approach to requirements management.

OUR APPROACH The current state of the art can be
improved by the seamless integration of requirements engi-
neering concerns into software development tools, developed
with language workbenches. This would lead to four main
benefits:

• reuse of well known tooling: both for editing of re-
quirements and for managing and versioning them.
This limits the accidental complexity introduced by
requirements engineering.

• ease of creating requirement traces: creating links
between requirements and artifacts can become much
simpler. More importantly, the tool can help to keep
traces consistent,

• ability to query the requirements model: getting some
practical benefits from the requirements not only during
the validation phase but also during development. The
practitioner (either a developer or a business analyst)
will be able to navigate relations between requirements
and artifacts and see, for examples, which requirements
are related to failing tests or are not connected to
implementing artifacts.

• extensibility: by using the language modularization
and composition features supported by language work-
benches, domain-specific extensions to (generic) re-
quirements documents can be seamlessly integrated.

In this paper we illustrate an approach that permits the
reduction of the cost of maintaining requirements and helps
to better leverage them, with immediate benefits to practi-
cioners. Our approach is based on the mbeddr technology
stack, which, in turn, is based on JetBrains MPS (discussed
below). This tool stack allows us to scale the level of
sophistication of the language used to express requirements
to the needs of the project. This way, agile projects can use
a basic version of the language to express requirements in



a very lightweight form. For more demanding contexts, for
example the development of complex embedded systems,
the tooling permits to plug-in domain-specific extensions of
the requirements language, supporting a more sophisticated
approach to requirements management.

MBEDDR mbeddr2 is an open source project support-
ing embedded software development based on incremental,
modular domain-specific extension of C. It also supports
other languages, which is what we exploit in this paper.
Figure 1 shows an overview, details are in [3] and [4].

Figure 1. The mbeddr technology stack rests on the MPS language
workbench. Above it, the first language layer contains an extensible version
of the C programming language plus special support for logging/error
reporting and build system integration. On top of that, mbeddr comes with
a set of default C extensions plus cross-cutting support for requirements,
traceability and product line variability.

mbeddr builds on the JetBrains MPS language workbench3,
a tool that supports the definition, composition and use of
general purpose or domain-specific languages. MPS uses a
projectional editor, which means that, although a syntax may
look textual, it is not represented as a sequence of characters
which are transformed into an abstract syntax tree (AST) by
a parser. Instead, a user’s editing actions lead directly to
changes in the AST. Projection rules render a concrete syn-
tax from the AST. Consequently, MPS supports non-textual
notations such as tables, and it also supports unconstrained
language composition and extension – no parser ambiguities
can ever result from combining languages.

The next layer in mbeddr is an extensible implementation
of the C99 programming language in MPS. On top of
that, mbeddr ships with a library of reusable extensions
relevant to embedded software. As a user writes a program,
he can import language extensions from the library them
into his program. The main extensions include test cases,
interfaces and components, state machines, decision tables
and data types with physical units. For many of these exten-
sions, mbeddr provides an integration with static verification

2http://mbeddr.com
3http://jetbrains.com/mps

tools (model checking state machines, verifying interface
contracts or checking decision tables for consistency and
completeness; see also [2]).

Finally, mbeddr supports two important aspects of the
software engineering process: requirements and product line
variability. Both are implemented in a generic way that
makes them reusable with any mbeddr-based language. We
discuss requirements in detail in the remainder of this paper.

II. CHALLENGES AND SOLUTIONS

In this section we describe a set of current challenges in
requirements engineering as well as our approach to solving
them in mbeddr.

A. Requirements Versioned with Code

Traditionally, requirements are stored in a tool-specific
database. Artifacts are instead typically stored in version
control systems (VCS) such as git, SVN or ClearCase. This
situation leads to synchronization problems when keeping
requirements in sync with the implementation. The natural
solution would be to store requirements and implementation
artifacts in the same VCS. Since most of today’s VCS
work with an update-and-merge strategy (as opposed to
pessimistic locking), the requirements tool would need to
support diff and merge for requirements as well.

In mbeddr, requirements are collected with a special
requirements language. Each requirement has an ID, a short
description, an optional longer prose, a priority and any
number of additional attributes. Requirements can also be
nested. Figure 2 shows an example.

Figure 2. Requirements in mbeddr are arranged as a tree. The colored
dots on the left reflect the trace status of a requirement (discussed below).

Importantly, since mbeddr is based on MPS, and MPS comes
with a generic XML-based storage, all requirements are
stored in XML files, along with any other implementation
artifacts. MPS also supports diff and merge for any arbitrary
language (based on the projected concrete syntax of each
particular language), so we get support for diffing and
merging requirements for free.

mbeddr’s requirements tooling also has an importer to
import requirements via XML or CSV files. This way, data
migration from traditional requirements management tools
is supported.



B. Traceability into Code

When we talk about the integration between code and
requirements, we first have to define what we mean by
code. In the context of mbeddr, code is any program (or
model) expressed with any MPS-based (programming or
modeling) language. In particular, C, all extensions of C
(default and user-defined) are considered code in the context
of this discussion.

The simplest kind of integration between code and re-
quirements is tracing: a program element has a pointer to
one or more requirements. Such a trace pointer essentially
expresses that this particular element is somehow related to
a set of requirements. By using different trace kinds, the
nature of ”somehow related” can be qualified. Trace kinds
typically include implements or tests.

Figure 3. A C module with a set of constants that have a trace to a
single requirement each. The tracing facility in mbeddr can add traces to
any program element expressed in any language.

Figure 3 shows a piece of mbeddr program code. The root
element is a module, and it has an annotation that specifies
to which requirements modules we may want to trace from
within that module. We can then add a trace to any program
element in that module, tracing to any requirement in the
referenced requirements module. There are four important
characteristics of this implementation.

1) The requirements trace is not just a comment. It is a
well-typed program element that can be used for all
kinds of analyses. For example, it is possible to select
the requirement, open the Find Usages dialog, and
retrieve all program elements that have traces attached
to the current requirement.

2) The trace is not an independent program element that
is just ”geographically close” to the program element
it traces. Instead, the trace is a child element of the
traced element. This means that, if you move, copy,
cut or paste the element, the trace moves with it.

3) Since MPS is a projectional editor, the program can
also be shown without the traces, if the user so desires.
The traces are still there and can be turned back on
again at any time.

4) The tracing facility is completely independent of the
traced language. Program elements defined in any
(MPS-based) language can be traced. Users can define
new languages, and the tracing mechanism will work
with the new language automatically.

While our tracing framework cannot remove the burden of
users to manually establish and maintain the traces according
to the actual relationship between the code and the require-
ments, the approach does solve all technical challenges in
providing universally-applicable tracing support. However,
the fact that referential integrity is automatically checked
and that arbitrary analyses can be built on top of the
program/requirement/trace data, can be used to ease the
work of the developer: requirments and traces are ”real
code”, and not just second-class meta data.

C. From Requirements to a Functional Architecture

Many projects start out by collecting requirements in a tool
such as DOORS, or in other prose-based ”databases” like
the one discussed for mbeddr above. However, using prose
only, it is very hard to keep things consistent – after all
there is no type checker or compiler for prose text. One
problem in this context is the definition of (functional) com-
ponents, their responsibilities and their collaborations with
other components, which express the high-level, functional
structuring of the to-be-built system. One way to get to such
components is to play through collaboration scenarios. From
these scenarios we can derive which data a components
owns, which other components it collaborates with, and
which services one component uses from another component
as part of such collaborations.

However, if we do this only with pen and paper (cf. CRC
cards), it can be tough to keep things consistent (this is the
prose-only problem in a different guise). At some point, we
have to become (somewhat) more formal.

In mbeddr, this is realized as follows. Requirements,
as introduced above, have a requirement kind (such as
functional, operational or usability). Requirements
also have additional data. Since MPS supports arbitrary
language extension and composition, it is possible to define
additional DSLs that can be plugged into a requirement.
To express the functional architecture, we have defined
three new requirement kinds: actor (an actor outside the
system boundary), component (a functional building block
of the to-be-built system) and scenario (an examplary
collaboration scenario between actors and components, not
unlike sequence diagrams).

Figure 4. A functional component. It owns a piece of data and provides
two capabilities. It does not collaborate with any other component.

Figure 4 shows an example of a functional component. Note
how it lives inside a requirement, even though the original



requirements language was not invasively changed. Figure 5
shows a scenario, expressed with a textual language, with
all the usual IDE support. In particular, if component A uses
a capability (”calls an operation on”) a component B, and B
is not defined as a collaborator of A, this results in an error
in the IDE. A quick fix can then add B as a collaborator for
A. Silimarly, one can only use capabilities that are actually
defined on the components. Finally, arguments to capabilities
can only be taken from the data that is owned by the client
component, or has been received from another capability
call during that same scenario. As a consequence, after
defining a set of scenarios, the components accumulate data,
capabilities and collaborators that are necessary to execute
the scenarios: a functional architecture arises, ”enforced” by
the underlying language and its constraints.

Figure 5. A scenario that describes exemplary interactions between
collaborating components (and external actors).

VISUALIZATION Scenarios are reminiscent of sequence
diagrams, so they can also be visualized this way (see
Figure 6). To make this possible, we have integrated Plan-
tUML4 into mbeddr – the diagram is rendered directly in
the tool, and a double-click on a diagram element selects
the underlying element in the editor. Additional diagrams
show the components, their data items and capabilities
and the collaborations. Another language extension supports
defining use cases, and use case diagrams can be rendered
from these. The use case attributes are extensible.

EXTENSIBILITY This language for expressing the func-
tional architecture does not have expressions, sophisticated
data types or a type checker. At this level of abstraction,
these would be distractions – the goal of this language is
the allocation of data, responsibilities and collaborations to
high-level functional building blocks of an application.

However, the language is extensible: new entities (in ad-
dition to components or actors) can be defined; components
can own additional things (in addition to data items and
capabilities) and scenarios can contain additional steps (in
addition to capability calls, headings, or alternatives). For
example, a component may contain a wireframe mockup
(which would have to be drawn outside of MPS) to represent

4http:://plantuml.sourceforge.net

Figure 6. A scenario that describes exemplary interactions between
collaborating components (and external actors).

UI aspects. It is also possible to add additional properties
and then check constraints based on these. For example,
components may be allocated to layers, and constraints
can be used to check whether collaborations and capability
usages respect layer constraints (e.g., you can call from the
business layer into the persistence layer, but not vice
versa). These additional data and constraints can be added
without invasively changing the basic scenario language,
and can also be added after the initial set of components
and scenarios have been defined, supporting incremental
refinement of the language as we incrementally refine our
understanding of the system. For example, systems engineers
may first define the components and the scenarios. Then, in
a second step, software architects may add the layer markup
and the associated constraints, and then, if some of the
constraints fail, split up or reallocate components to make
them fit with the layer structure. Refactorings can be added
to make such changes to the component structure simpler.

D. Tracing into other Artifacts

In many projects, requirements are not the last step before
coding, and the functional architecture discussed in the
previous section is too simplistic to describe the function-
ality of the system. Instead, other artifacts are developed,
including system engineering models, function models or
physical models. Often these models are built with tools such
as Matlab/Simulink5 or Modelica6, or use formalisms such
as EAST-ADL7. It is usually not possible to automatically
derive software artifacts from such models, since they are

5http://www.mathworks.com
6https://www.modelica.org
7http://www.east-adl.info/



too abstract. However, as software artifacts are developed, it
is necessary to relate the software artifacts to these models.

To make this possible, mbeddr’s tracing framework is ex-
tensible: Other artifacts can be used as requirements targets
as well (as long as the respective language constructs im-
plement an mbeddr-provided interface). This way, arbitrary
descriptions or models (such as system models, functional
models or component models) can be traced to. By adding
an import facility, models created with other engineering
tools can be integrated reasonably well with mbeddr-based
artifacts. For example, we are currently implementing an
importer for Matlab/Simulink models to support tracing to
simulink blocks from mbeddr program nodes.

E. Formal Business Logic in Requirements

The previous two subsections have addressed the challenge
of becoming ”more formal” with the goal of narrowing down
the functional architecture of a system. Another way of get-
ting incrementally closer to the implementation is to embed
important parts of the business logic into requirements, and
then use those in the implementation code.

Figure 7. A calculation is a function embedded into a requirement. They
include test cases that allow ”business people” to play with the calculations.
An interpreter evaluates tests directly in the IDE for quick turnaround.

Figure 7 shows two requirements. The first one defines
a constant BASE_POINTS with the type int8 and the
value 10. The second requirement defines a calculation
PointsForATrackpoint. A calculation has a name, a list
of parameters, and a result expression, which, in this case,
uses decision table (a two-dimensional representation of
nested if-statements8). The calculation also references the
BASE_POINTS constant. Using constants and calculations,
business users can formally specify some important business
data and rules, while not having to deal with the actual
implementation of the overall system. To help with getting
these data and rules correct, calculations also include test
cases. These are evaluated directly in the IDE, using an
interpreter: users can directly ”play” with the calculations.

CONNECTING TO CODE If the constants and calculations
that business users specify in the requirements were only

8Projectional editors like MPS can deal with non-textual notations such
as tables, vectors, matrices or fraction bars or ”big sum” symbols.

used in requirements, this would be only partially useful. In
the end, these calculations should make their way into the
code directly, without manual re-coding.

Figure 8. Implementation code can directly call calculation functions
defined in requirements. In this case, a calculation is called from a
component, expressed in the mbeddr’s components C extension.

Figure 8 shows a component, expressed in mbeddr’s com-
ponent extension to C. Inside the component we directly
invoke a calculation (the green code), using function call
syntax. When this code is translated to C, the expression in
the calculation is translated into C and inlined.

The constant and the calculation are just examples of
possible ”plug in” languages into mbeddr’s requirements
system. Any DSL, using a wide range of business user-
friendly notations, can be plugged in and made available
to C-based implementations.

III. DISCUSSION

The tooling described in this paper solves some important
challenges in requirements engineering. However, it is not
a complete solution (yet). For example, some contexts
require information security or multi-client capability for
the requirements. This is currently not addressed. Also, it
is assumed that all artifacts reside in MPS, which limits the
applicability of the approach. However, it is our opinion –
and the core message of this paper – that any engineering
tool should always be based on a language workbench like
MPS that supports approaches like the one discussed in
this paper. Another limitation is that no integration with
current trends such as OSLC9 (Open Services for Lifecycle
Collaboration) is provided. Finally, this paper only addresses
the overall paradigm and tooling, it does not discuss a
methodology for requirements management. In our opinion
these two concerns are largely orthogonal: once a tool is as
powerful and extensible as mbeddr/MPS, it can be adapted
to many differnet methodologies or processes.

It could be argued that the high-level components and
scenarios discussed in Section II-C, as well as the formal
business logic discussed in Section II-E are not requirements
anymore, but rather architecture or design. However, we
think that this distinction is arbitrary and not very helpful,
especially in the context of a tool such as the one described
in this paper: there has to be some consistent and integrated

9http://open-services.net/



path from prose requirements to the implementation code.
The tooling discussed in this paper provides such a path. It
is not important at which point is this continuum we stop
calling the activity ”requirements engineering”.

IV. RELATED WORK

As mentioned in the introduction, Winkler and von Pilgrim
[5] performed a literature review on traceability, considering
it both for MDD and requirements. They conclude that
tracing is rarely used in practice and the most prominent
problem leading to this is the lack of proper tool support.
Our approach provides a possible solution to this dilemma
and could therefore contribute to helping practitioners in
adopting requirements traceability, particularly, in contexts
where the process requires it.

DSLs have traditionally not seen much use in require-
ments engineering, they are typically associated more with
the implementation phase or with software architecture.
However, as we demonstrate in this paper, DSLs, especially
extensible DSLs, can be very useful in requirements en-
gineering. Other tools, for example, itemis’ Yakindu Re-
quirements10 also implement this idea: it also uses (mostly)
textual DSLs plus visualization. In contrast to our approach,
however, extensibility is more limited, since the underlying
language workbench (Eclipse Xtext11) supports only limited
forms of language extension.

Favaro et al. [1] present an approach to requirements
engineering that has some commonalities with ours. Like
us, they have the goal to introduce structured, model-based
requirements. Their approach relies on the use of a wiki
enriched by semantic links, and they also provide a require-
ments browser inside the IDE (Eclipse) supporting some
navigation capabilities from the requirement to the artifact
(but not vice versa). They underline two points with which
we strongly agree: a) the importance of having an adaptable
mechanism for requirements, depending not only on the
nature of the project but also on the kind of the requirement,
with a lighter process for ”non-technical” requirements;
b) the fact that requirements and implementation artifacts
are intrinsically integrated. We think, however, that our
approach offers: a) better integration between requirements
and artifacts, and b) the possibility to have both a flexible
approach but also specific IDE support for any particular
kind of formal language embedded into the requirements
(thanks to the projectional editor).

V. FUTURE WORK

There are three main areas for future work. First, we will add
reporting functionalilty, targetting requirements documents
in HTML and Latex. The reports will include the diagrams,
as well as trace reports. Another target is Excel, which is
often the preferred way to get ”numbers” by management.

10http://www.yakindu.de/requirements/
11http://eclipse.org/xtext

Second, a colleague of ours is currently working on an MPS
editor component that supports mixing free text (with text-
like editing support) and instances of language concepts.
Integrating this editor with the requirements management
tooling discussed in this paper will be extremely useful:
for example, one could reference other requirements from
within the prose description of a particular requirement,
while making sure that this reference would take part in
refactorings.

VI. SUMMARY

mbeddr’s core idea is discussed in [3]: building domain-
specific tools is not just about adapting a tool to a particular
domain (windows, buttons, tool bars). It is rather more
important to adapt to the domain the languages, formalisms
and data formats that underlie the tool. If you do this
based on a language workbench, you get the tool adaptation
essentially for free. This is because the actual tool, JetBrains
MPS, is essentially a very powerful editor for any kind of
language. By adapting the language, you get the adapted tool
automatically. In this paper, we have demonstrated this idea
for requirements management. All the benefits discussed
in this paper involve only language engineering. No tool
aspects have been customized.

ACKNOWLEDGEMENTS We thank the mbeddr and MPS
development teams for creating an incredibly powerful plat-
form that can easily accomodate the features described in
this paper. We would also like to thank Christoph Becker
for making us aware of PlantUML and inspiring the scenario
extension to requirements. We also want to thank Andreas
Graf and Nora Ludewig for their feedback to the paper.

REFERENCES

[1] J. Favaro, H.-P. de Koning, R. Schreiner, and X. Olive. Next
generation requirements engineering. In Proc. 22nd Annual
INCOSE International Symposium (Rome, Italy, July 2012),
2012.

[2] D. Ratiu, M. Voelter, B. Schaetz, and B. Kolb. Language
Engineering as Enabler for Incrementally Defined Formal
Analyses. In FORMSERA’12, 2012.

[3] M. Voelter, D. Ratiu, B. Kolb, and B. Schaetz. mbeddr:
Instantiating a language workbench in the embedded software
domain. Journal of Automated Software Engineering, 2013.

[4] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an ex-
tensible c-based programming language and ide for embedded
systems. In Proc. of the 3rd conf. on Systems, programming,
and applications: software for humanity, SPLASH ’12, pages
121–140, New York, NY, USA, 2012. ACM.

[5] S. Winkler and J. Pilgrim. A survey of traceability in require-
ments engineering and model-driven development. Software
and Systems Modeling, 9:529–565, 2010.


