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Abstract

While the C programming language provides very good
support for writing efficient, low-level code, it does not
offer adequate means for defining higher-level abstrac-
tions relevant to embedded software. In this paper we
present the mbeddr technology stack that supports ex-
tension of C with constructs adequate for embedded
systems. In mbeddr, efficient low-level programs can be
written using the well-known concepts from C. Higher-
level domain-specific abstractions can be seamlessly in-
tegrated into C by means of modular language exten-
sion regarding syntax, type system, semantics and IDE.
In the paper we show how language extension can ad-
dress the challenges of embedded software development
and report on our experience in building these exten-
sions. We show that language workbenches deliver on
the promise of significantly reducing the effort of lan-
guage engineering and the construction of correspond-
ing IDEs. mbeddr is built on top of the JetBrains MPS
language workbench. Both MPS and mbeddr are open
source software.

1. Introduction

The amount of software embedded in devices is grow-
ing (see, for example, the German National Roadmap
for Embedded Systems [9]). Embedded software devel-
opment is a challenging field. In addition to functional
requirements, strict operational requirements have to
be fulfilled as well. These include reliability (a device
may not be accessible for maintenance after deploy-
ment), safety (a system may endanger life or property
if it fails), efficiency (the resources available to the sys-
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tem may be limited) or real-time constraints (a sys-
tem may have to run on a strict schedule prescribed
by the system’s environment). Addressing these chal-
lenges requires any of the following: abstraction tech-
niques should not lead to excessive runtime overhead;
programs should be easily analyzable for faults before
deployment; and various kinds of annotations, for ex-
ample for describing and type checking physical units,
must be integrated into the code. Process issues such
as requirements traceability have to be addressed, and
developers face a high degree of variability, since em-
bedded systems are often developed in the context of
product lines.

Current approaches for embedded software develop-
ment can roughly be distinguished into programming
and modeling. The programming approach mostly re-
lies on C, sometimes C++ and Ada in rare cases. How-
ever, because of C’s limited support for defining cus-
tom abstractions, this can lead to software that is hard
to understand, maintain and extend. Furthermore, C’s
ability to work with very low-level abstractions such as
pointers, makes C code very expensive to analyze stati-
cally. The alternative approach uses modeling tools with
automatic code generation. The modeling tools provide
predefined, higher-level abstractions such as state ma-
chines or data flow component diagrams. Example tools
include ASCET-SD! or Simulink?. Using higher-level
abstractions leads to more concise programs and sim-
plified fault detection using static analysis and model
checking (for example using the Simulink Design Ver-
ifier®). Increasingly, domain specific languages (DSLs)
are used for embedded software [1, 17, 18]. Studies such
as [7] and [25] show that domain-specific languages sub-
stantially increase productivity in embedded software
development. However, most real-world systems cannot
be described completely and adequately with a single

Lhttp://www.etas.com/
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modeling tool or DSL, and the integration effort be-
tween manually written C code and possibly several
modeling tools and DSLs becomes significant.

A promising solution to this dilemma lies in a much
tighter integration between low-level C code and higher-
level abstractions specific to embedded software. We
achieve this with an extensible C programming lan-
guage. The advantages of C can be maintained: exist-
ing legacy code can be easily integrated, reused, and
evolved, and the need for efficient code is immediately
addressed by relying on C’s low-level programming con-
cepts. At the same time, domain-specific extensions
such as state machines, components or data types with
physical units can be made available as C extensions.
This improves productivity via more concise programs,
it helps improve quality in a constructive way by avoid-
ing low-level implementation errors up-front, and leads
to system implementations that are more amenable to
analysis. By directly embedding the extensions into C,
the mismatch and integration challenge between do-
main specific models and general purpose code can be
removed. An industry-strength implementation of this
approach must also include IDE support for C and the
extensions: syntax highlighting, code completion, error
checking, refactoring and debugging.

Developing such an extensible language and IDE
is hard, but modern language engineering approaches
promise to make it much simpler. The LW-ES research
project, run by itemis AG, fortiss GmbH and Sick AG
explores the benefits of language engineering in the
context of embedded software development. The open
source project is hosted at http://mbeddr.com. The
code is available via this site.

Contribution In this paper we present mbeddr, an
extensible C-based language and IDE for embedded
software development. In particular, the paper makes
the following contributions:

First, we present the design and implementation of
mbeddr, which relies heavily on language engineering
techniques. Extensions to C are modular, i.e. they can
be developed without changing the C base language,
and they are incremental, since they can be developed
at any time and users can include extension modules
into programs as the need arises. Extensions address
syntax, type systems, semantics (by transformation to
lower abstraction levels) as well as IDE support.

Second, the paper serves as a case study for the power
and maturity of projectional language workbenches, and
MPS in particular. We show how, with very limited ef-
fort, we were able to implement a significant set of lan-
guages that is ready to be used by embedded developers.

Third, we present a new approach to embedded soft-
ware development located between programming and
modeling. We illustrate a set of extensions to C that

address important challenges in the embedded domain.
Examples of such extensions include state machines,
components and interfaces as well as the possibility of
defining different restrictions of C in order to make pro-
grams conform to programming standards. We briefly
illustrate how these extensions enable the use of ad-
vanced analyses such as model checking.

Even though the work presented here is centered on C
and embedded software, the approach can be used with
other domains and other base languages (we discuss this
in Section 7). In this case, the first contribution would
serve as a blueprint for identifying, motivating and
designing language extensions. The second would serve
as comparative reference for future (research) projects
that use other language approaches or tools. The third
would serve as a baseline for more specialized DSLs in
specific subdomains of embedded software.

Outline In the next section we describe in more detail
the challenges faced in embedded software development.
In Section 3, we provide an overview over our solution
approach and identify ways in which C must be exten-
sible to allow the definition of adequate domain specific
abstractions. Section 3.3 introduces a number of exam-
ple extensions that address the challenges outlined in
Section 2. We describe the implementation of these ex-
tensions, and with it, the design of the extensible C
base language in Section 4. We discuss our experience
in building mbeddr in Section 5. We wrap up the paper
with related work (Section 6), a discussion (Section 7)
and an outlook on future work in Section 8.

2. Challenges in Embedded Software

In this section we discuss a set of challenges we address
with the mbeddr approach. We label the challenges C,,
so we can refer to them from Section 3.3 where we show
how they are addressed by mbeddr C. While these are
certainly not all challenges embedded software develop-
ers face, based on our experience with embedded soft-
ware and feedback from various domains (automotive,
sensors, automation) and organizations (small, medium
and large companies), these are among the most impor-
tant ones.

C4: Abstraction without Runtime Cost Domain-
specific concepts provide more abstract descriptions of
the system under development. Examples include data
flow blocks, state machines, or data types with physical
units. On the one hand, adequate abstractions have a
higher expressive power that leads to shorter and eas-
ier to understand and maintain programs. On the other
hand, by restricting the freedom of programmers, do-
main specific abstractions also enable constructive qual-
ity assurance. For embedded systems, where runtime ef-
ficiency is a prime concern, abstraction mechanisms are



needed that can be resolved before or during compila-
tion, and not at runtime.

Cy: C considered Unsafe While C is efficient and
flexible, several of C’s features are often considered
unsafe. For example, unconstrained casting via void
pointers, using ints as Booleans or the weak typing
implied by unions can result in runtime errors that are
hard to track down. Consequently, the unsafe features
of C are prohibited in many organizations. Standards
for automotive software development such as MISRA
[28] limit C to a safer language subset. However, most
C IDEs are not aware of these and other, organization-
specific restrictions, so they are enforced with separate
checkers that are often not well integrated with the IDE.
This makes it hard for developers to comply with these
restrictions efficiently.

Cs3: Program annotations For reasons such as
safety or efficiency, embedded systems often require
additional data to be associated with program elements.
Examples include physical units, coordinate systems,
data encodings or value ranges for variables. These
annotations are typically used by specific, often custom-
built analysis or generation tools. Since C programs
can only capture such data informally as comments
or pragmas, the C type system and IDE cannot check
their correct use in C programs. They may also be
stored separately (for example, in XML files) and linked
back to the program using names or other weak links.
Even with tool support that checks the consistency of
these links and helps navigate between code and this
additional data, the separation of core functionality and
the additional data leads to unnecessary complexity and
maintainability problems.

Cy: Static Checks and Verification Embedded sys-
tems often have to fulfil strict safety requirements. In-
dustry standards for safety (such as 1SO-26262, DO-
178B or IEC-61508) demand that for high safety certi-
fication levels various forms of static analyses are per-
formed on the software. These range from simple type
checks to sophisticated property checks, for example by
model checking [20]. Since C is a very flexible and rel-
atively weakly-typed language, the more sophisticated
analyses are very expensive. Using suitable domain-
specific abstractions (for example, state machines) leads
to programs that can be analyzed much more easily.

C5: Process Support There are at least two cross-
cutting and process-related concerns relevant to em-
bedded software development. First, many certification
standards (such as those mentioned above) require that
code be explicitly linked to requirements such that full
traceability is available. Today, requirements are often
managed in external tools and maintaining traceability
to the code is a burden to the developers and often done

in an ad hoc way, for example via comments. Second,
many embedded systems are developed as part of prod-
uct lines with many distinct product variants, where
each variant consists of a subset of the (parts of) arti-
facts that comprise the product line. This variability is
usually captured in constraints expressed over program
parts such as statements, functions or states. Most ex-
isting tools come with their own variation mechanism,
if variability is supported at all. Integration between
program parts, the constraints and the variant config-
uration (for example via feature models) is often done
through weak links, and with little awareness of the se-
mantics of the underlying language. For example, the
C preprocessor, which is often used for this task, per-
forms simple text replacement or removal controlled by
the conditions in #ifdefs. As a consequence, variant
management is a huge source of accidental complexity.

An additional concern is tool integration. The diverse
requirements and limitations of C discussed so far of-
ten lead to the use of a wide variety of tools in a sin-
gle development project. Most commercial off-the-shelf
(COTS) tools are not open enough to facilitate seam-
less and semantically meaningful integration with other
tools, leading to significant accidental tool integration
complexity. COTS tools often also do not support mean-
ingful language extension, severely limiting the ability
to define and use custom domain-specific abstractions.

3. The mbeddr Approach

Language engineering provides a holistic approach to
solve these challenges. In this section we illustrate how
mbeddr addresses the challenges with an extensible ver-
sion of the C programming language, growing a stack
of languages extensions (see Fig. 1). The following sec-
tion briefly discusses language extension in general and
explores which ways W, of extending C are necessary
to address the challenges C,,. Section 3.3 then shows
examples that address each of the challenges and ways
of extending C.

3.1 Language Extension

In [37] we classify strategies for language modulariza-
tion and composition. Traditionally, languages are com-
posed by referencing: The partial programs expressed
with different languages reside in their own files and
refer to each other via references, often using qualified
names. There is no syntactic integration, where a sin-
gle program file contains language constructs defined
in different languages. While referencing is sometimes
useful, syntactic integration is required in many cases,
as we will see in the examples provided in Section 3.3.
In [37] we identify two strategies that support syntactic
integration: language embedding refers to the syntactic
composition of two independent languages. The embed-
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Figure 1. Based on MPS, mbeddr comes with an im-
plementation of the C programming language. On top
of C mbeddr defines a set of default extensions (white
boxes) stacked on top of each other. Users can use them
in their programs, but they don’t have to. Support for
requirements traceability and product line variability is
cross-cutting. Users build their own extensions on top
of C or on top of the default extensions. (Note: compo-
nent/state machine integration and state machine tests
are not discussed in this paper.)

ded language has no dependency on the host language.
Both have been developed independently, and the act
of embedding does not require changes to either lan-
guage. In language extension, a dependency from the
extending language to the base language is allowed, for
example, by inheriting from language concepts defined
in the base language. The mbeddr system relies primar-
ily on language extension.

To make language extension useful, it must provide
deep syntactic and semantic integration, as well as an
IDE that is aware of the language extensions. It is much
more than a macro system or an open compiler (cf. Re-
lated Work in Section 6). Our implementation technol-
ogy, the JetBrains MPS open source language work-
bench, supports the flexible definition, extension, com-
position and use of multiple languages. A language ex-
tension defines new structure, syntax, type system rules
and semantics, as well, as optionally, support for refac-
toring, quick fixes and debugging. The semantics of an
extension are typically defined by a transformation back
to the base language, an approach also called assimila-
tion [6]. For example, in an extension that provides state
machines, these may be transformed to a switch/case-
based implementation in C. Extensions can be stacked
(Fig. 1), where a higher-level extension extends (and
transforms back to) a lower-level extension instead of
C. At the bottom of this stack resides plain C in textual
form and a suitable compiler. Fig. 2 shows an example
where a module containing a component containing a
state machine is transformed to C, and then compiled.

A set of organizations, such as the departments in a
large company, will likely not agree on a single set of
extensions to C since they typically work in slightly dif-
ferent areas. Also, a language that contains all relevant
abstractions would become big and unwieldy. Thus, ex-

Module Module Module
Component Component Components reduced to
I:.b State Machine I:.I> C functions and structs;
State Machine . enums remain
reducgd to switch/ unchanged.
case in component
method and enums
| State Machine Language
i Components Language

C Core Language

Text I:f:.‘> Binary

Figure 2. Higher-level abstractions such as state ma-
chines or components are reduced incrementally to their
lower-level equivalent, reusing the transformations built
for lower-level extensions. Eventually, C text is gener-
ated which is subsequently compiled with a C compiler
suitable for the target platform.

tensions have to be modular. They have to be defined
independent of each other, without modifying the base
language, and unintended interactions between inde-
pendently created extensions must be avoided (a discus-
sion of automatic detection of interactions is beyond the
scope of this paper). Also, users must be able to include
incrementally only those extensions into any given pro-
gram they actually need. Ideally, they should be able to
do this without requiring the definition of a "combined
language” for each combination of used extensions: for
example, a user should be able to include an extension
providing state machines and an extension providing
physical units in the same program without first defin-
ing a combined language statemachine-with-units.

3.2 Ways to extend C

In this section we discuss in which particular ways
C needs to be extensible to support addressing the
challenges discussed above. Section 3.3 shows examples
for each of the ways.

Wi: Top Level Constructs Top level constructs (on
the level of functions or struct declarations) are nec-
essary. This enables the integration of test cases or new
programming paradigms relevant in particular domains
such as state machines, or interfaces and components.

Wsy: Statements New statements, such as assert
or fail statements in test cases, must be supported. If
statements introduce new blocks, then variable visibility
and shadowing must be handled correctly, just as in
regular C. Statements may have to be restricted to
a specific context; for example the assert or fail
statements must only be used in test cases and not in
any other statement list.

Ws3: Expressions New kinds of expressions must be
supported. An example is a decision table expression
that represents a two-level decision tree as a two di-
mensional table (Fig. 5).

W,: Types and Literals New types, e.g. for matrices,
complex numbers or quantities with physical units must



be supported. This also requires defining new operators
and overriding the typing rules for existing ones. New
literals may also be required: for example, physical units
could be attached to number literals (as in 10kg).

Ws: Transformation  Alternative transformations
for existing language concepts must be possible. For
example, in a module marked as safe, x + y may have
to be translated to addWithBoundsCheck(x, y), a call
to an inline function that performs bounds-checking
besides the addition.

Weg: Meta Data Decoration It should be possible
to add meta data such as trace links to requirements or
product line variability constraints to arbitrary program
nodes, without changing the concept of the node.

Wr: Restriction It should be possible to define con-
texts that restrict the use of certain language concepts.
Like any other extension, such contexts must be defin-
able after the original language has been implemented,
without invasive change. For example, the use of pointer
arithmetic should be prohibited in modules marked as
safe or the use of real numbers should be prohibited in
state machines that are intended to be model checked
(model checkers do not support real numbers).

module Sensors imports {
exported double readSensor() {
return ...;
}
double performPlausibilisation() {
return ...;
}
}

module Controller imports Sensors {
void controllerLoop() {
while ( true ) {
double val = readSensor();

}
}

"

#include "Sensor.h”

#ifndef SENSOR_H
#define SENSOR_H
double Sensor_readSensor(); ; jdouble Sensor_readSensor() { ... }

#endif double Sensor_performPlausibilisation|)

{1

Sensor.h

Sensor.c

#include "Controller.h”

#include "Sensor.h”

void Controller_controllerLoop(){
#endif while {1) {

double val = Sensor_readSensor();

#ifndef CONTROLLER_H
#define CONTROLLER_H

Controller.h

}}...

Controller.c

’ Challenge ‘ Example Extensions

Cy State machines (W7, W3)
(Low-Overhead Components (W7)

Abstraction) Decision Tables (W3)
Cy Cleaned up C (Wr)
(Safer C) Safe Modules (W5, Wr)
Cs Physical Units (Wy)
(Annotations)

Cy Unit Tests (Wq, Wa)

(Static Checks, State Machines (Wy, W)
Verification) Safe Modules (W, W5, Wy)

Cs Requirements Traceability (Ws)
(Process Support) | Product Line Variability (Ws)

Figure 3. Embedded software development challenges,
example extensions in this section, and the ways of
extending C each example makes use of.

3.3 Extensions addressing the Challenges

In this section we present example extensions that il-
lustrate how we address the challenges discussed in Sec-
tion 2. We show at least one example for each challenge.
How such extensions are built will be discussed in the
next section, Section 4. Our aim in this paper is to show-
case the extensibility of the mbeddr system, and, by
this, language engineering using language workbenches.
We will not discuss in detail any particular extension.
The table in Fig. 3 shows an overview over the chal-
lenges, the examples in this section, and the ways of
extension each example makes use of.

Figure 4. Modules are the top-level container in
mbeddr C. They can import other modules, whose ex-
ported contents they can then use. Exported contents
are put into the header files generated from modules.

A cleaned up C (addresses Cy, uses Wr) To make C
extensible, we first had to implement C in MPS. This
entails the definition of the language structure, syntax
and type system?. In the process we changed some as-
pects of C. Some of these changes are a first step in
providing a safer C (Cs). Others changes were imple-
mented because it is more convenient to the user or be-
cause it simplified the implementation of the language
in MPS. Out of eight changes total, four are for reasons
of improved robustness and analyzability, two are for
end user convenience and three are to simplify the im-
plementation in MPS. We discuss some of them below.
mbeddr C provides modules (Fig. 4). A module con-
tains the top level C constructs (such as structs, func-
tions or global variables). These module contents can be
exported. Modules can import other modules, in which
case they can access the exported contents of the im-
ported modules. While header files are generated, we do
not expose them to the user: modules provide a more
convenient means of controlling modularizing programs
and limiting which elements are visible globally.
mbeddr C does not support the preprocessor. Empir-
ical studies such as [16] show that it is often used to

4 A generator to C text is also required, so the code can be fed into
an existing compiler. However, since this generator merely renders
the tree as text, with no structural differences, this generator is
trivial. We do not discuss it any further



emulate missing features of C in ad-hoc way, leading
to problems regarding maintenance and analyzability.
Instead, mbeddr C provides first class support for the
most important use cases of the preprocessor. Exam-
ples include the modules mentioned above (replacing
#include) as well as the support for variability dis-
cussed below (replacing #ifdefs). Instead of defining
macros, users can create first-class language extensions
including type checks and IDE support. Removing the
preprocessor and providing specific support for its im-
portant use cases goes a long way in creating more main-
tainable and more analyzable programs. The same is
true for introducing a separate boolean type and not
interpreting integers as Booleans by default. An explicit
cast operator is available.

Type decorations, such as array brackets or the
pointer asterisk must be specified on the type, not on
the identifier (int[] a; instead of int a[];). This has
been done for reasons of consistency and to simplify the
implementation in MPS: it is the property of a type to
be an array type or a pointer type, not the property of
an identifier. Identifiers are just names.

Decision Tables (addressing Cy, uses W3) are a
new kind of expression, i.e. they can be evaluated. An
example is shown in Fig. 5. A decision table represents
nested if statements. It is evaluated to the value of
the first cell whose column and row headers are true
(the evaluation order is left to right, top to bottom).
A default value (FAIL) is specified to handle the case
where none of the column/row header combinations is
true. Since the compiler and IDE have to compute a
type for expressions, the decision table specifies the type
of its result values explicitly (int8_t).

Unit Tests (addresses Cy, uses Wy, W) are new
top-level constructs (Fig. 6) introduced in a separate
unittest language that extends the C core. They are
like void functions without arguments. The unittest
language also introduces assert and fail statements,
which can only be used inside test cases. Testing embed-
ded software can be a challenge, and the unittest exten-
sion is a first step at providing comprehensive support
for testing. mbeddr also provides support for platform-
independent logging as well as for specifying stubs and
mocks. We do not discuss this in this paper.

Components (addresses C1, uses Wj) are new top
level constructs that support modularization, encapsu-
lation and the separation between specification and im-
plementation (Fig. 7). In contrast to modules, a com-
ponent uses interfaces and ports to declare the contract
it obeys. Interfaces define operation signatures and op-
tional pre and post conditions (not shown in the exam-
ple). Provided ports declare the interfaces offered by a
component, required ports specify the interfaces a com-
ponent expects to use. Different components can imple-

enum mode { MANUAL; AUTO; FAIL; }

mode nextMode(mode mode, int8_t speed) {
return mode, FAIL

| mode == MANUAL

|speed < 38| MANUAL

speed > 30| MANUAL
» 4

mode == AUTO
AUTO
MANUAL

»

typedefenum __ MODE{MAMNUAL, AUTO,FAIL} _MODE;
_MODEnextMode(_MODEmode, int8_t speed) {

if (current == MANUAL) {

if (speed<=30) {return MANUAL;}

if (speed>=30 && speed< 50} {return MANUAL;}

h

if (current == AUTO)} { ... }

return FAIL;
h

Figure 5. A decision table evaluates to the value in the
cell for which the row and column headers are true,
a default value otherwise (FAIL in the example). By
default, a decision table is translated to nested ifs in
a separate function. The figure shows the translation
for the common case where a decision table is used in a
return. This case is optimized to not use the indirection
of an extra function.

module UnitTestDemo imperts Sensors {
exported test case sensorReadTest {
assert(®) readSensor() » 8;
assert(1l) readSensor() < 1808;

#include "Sensor.h"
int8_t UnitTestDemo_test_sensorReadTest() {
int8_t__failures=0;
printf{"running test @ UnitTestDemo:test_sensorReadTest:0\n");
if { |{Sensor_readSensor() >0} | {
__failures++;
printf{"FAILED: @ UnitTestDemo:test_sensorReadTest:1\n");
printf{" testlD = %d\n",0);
1
if { 1|{Sensor_readSensor()<1000)){..}
return __failures;

1

Figure 6. The unittest language introduces test cases
as well as assert and fail statements which can only
be used inside of a test case. Test cases are transformed
to functions, and the assert statements become if
statements with a negated condition. The generated
code also counts the number of failures so it can be
reported to the user via a binary’s exit value.

ment the same interface differently. Components can be
instantiated (also in contrast to modules), and each in-
stance’s required ports have to be connected to com-
patible provided ports provided by other component
instances. Polymorhphic invocations (different compo-
nents "behind” the same interface) are supported.

State Machines (addresses Cy, Cy, uses Wy, Ws) pro-
vide a new top level construct (the state machine itself)



module SensorComp imports Sensors , LoggingService {
exported ¢fs interface Sensorfccess {
double readValue()
}

exported component SimpleSensor extends nothing {
provides SensorAccess sensor

double read() 4= op sensor.readValue {
return readSensor();

o}

exported component PlausiSensor extends nothing {

provides SensorAccess sensor
requires LoggingService log

double read() 4= op sensor.readValue {
double val = readSensor();
if ( val > 188 ) {
log.info( “Sensor value unexpected big");

return 166;
1} ¥ ‘ Sensors.h

}
return val;
struct Sensors_compdata_SimpleSensor {};
double Sensors_SimpleSensor_read{void* inst_data);

structSensors_data_PlausiSensor {
void* port_log;

void (*op_log_info)(char®, void*);
1

double Sensors_PlausiSensor_read(void® inst_data);

Sensors.c

#include "Sensors.h"
#include "Sensor.h”
#include "LoggingService.h"

double Sensors_SimpleSensor_read(void* inst_data) {
return Sensor_readSensor();

H

double Sensors_PlausiSensor_read|void* inst_data) {
double val = Sensor_readSensor();
if (val »100){
(*((struct Sensors_data_PlausiSensor®)inst_data)-»op_log_info)
("Sensor value unexpected big",
({struct Sensors_data_PlausiSensor*inst_data)->port_log);
return 100;
1
return val;

1

Figure 7. Two components providing the same inter-
face. The arrow maps operations from provided ports
to implementations. An indirection through function
pointers enables different implementations for a single
interface, enabling OO-like polymorphic invocations.

as well as a trigger statement to send events into state
machines (see Fig. 8). State machines are transformed
into a switch/case-based implementation in the C pro-
gram. Entry, exit and transition actions may only access
variables defined locally in state machines and fire out
events. Out events may optionally be mapped to func-
tions in the surrounding C program, where arbitrary be-
haviour can be implemented. This way, state machines
are semantically isolated from the rest of the code, en-
abling them to be model checked: if a state machine
is marked as verifiable, we also generate a represen-
tation of the state machine in the input language of

the NuSMV model checker®, including a set of property
specifications that are verified by default. Examples in-
clude dead state detection, dead transition detection,
non-determinism and variable bounds checks. In addi-
tion, users can specify additional high-level properties
based on the well-established catalog of temporal logic
properties patterns in [12]. We discuss the integration
of formal verification into mbeddr in more detail in [31].

derived unit mps = m s for speed
convertible unit kmh for speed
conversion kmh =» mps = val * 6.27

int8_t/mps/ calculateSpeed(int8_t/m/ length, int8_t/s/ time) {
int8_t/mps/ s = length / time;
if (s > 188 mps) { s = [188 kmh = mps]; }
return s;

}

Figure 9. The units extension ships with the SI base
units. Users can define derived units (such as the mps in
the example) as well as convertible units that require a
numeric conversion for mapping back to SI units. Type
checks ensure that the values associated with unit liter-
als use the correct unit and perform unit computations
(as in speed equals length divided by time). Errors are
reported if incompatible units are used together (e.g. if
we were to add length and time). To support this fea-
ture, the typing rules for the existing operators (such as
+ or /) have to be overridden.

Physical Units (addresses C3, uses W) are new
types that also specify a physical unit in addition to
their actual data type (see Fig. 9). New literals are
introduced to support specifying values for these types
that include the physical unit. The typing rules for
the existing operators (+, * or >) are overridden to
perform the correct type checks for types with units.
The type system also performs unit computations to
deal correctly with speed = length/time, for example.

Requirements Traces (addresses C5, uses W) are
meta data annotations that link a program element to
requirements, essentially elements in other models im-
ported from requirements management tools. Require-
ments traces can be attached to any program element
without that element’s definition having to be aware of
this (see green highlights in Fig. 10 and in Fig. 23 ).

Presence Conditions (addresses C5 and W) A pres-
ence condition determines whether the program element
to which it is attached is part of a product in the prod-
uct line. A product is configured by specifying a set of
configuration flags and the presence condition specifies
a Boolean expression over these configuration switches®.

5http://nusmv.fbk.eu

6We use feature models to express product configurations, and
the presence conditions are expressions over features. But this
aspect is not essential to the discussion here.



module Counter imports Sensors { #intlude "Counter h"

statemachine Counter { #include "Sensor.h”
in count()
out tick(int[e..1e8@] val) = tickHandler
local int[@..188] current = 8
states ( initial = Init ) -
state Init {
on count [ ] = Counting

switch (event) {

state Counting {
on count [current < 188] - Counting {
send tick(current);
current++;
} 1

on count [current == 188] =2 Init

return;

H

} } while {1) {
void tickHandler(int8_t counterval) { ... }

void mainLoop(Counter counterl) {
while ( true ) { 1
if ( readSensor() » 108 ) {

void Counter_sm_execute_Counter{struct Counter_sm_data_Counter® instance,
Counter_sm_events_Counter event, void** arguments) {
switch (instance-»__curState) {
case Counter__state_Init: { .. }
case Counter__state_Counting: {

case Counter__event_count: {

if { instance->current < 100) {
} Counter_tickHandler{instance-»current);
instance->__curState = Counter__state_Counting;
instance->current++;

if { instance-»current==100){ ..}

void Counter_tickHandler(int&_t counterval) { ... }
void Counter_mainLoop(struct Counter_sm_data_Counter counterl){

if { Sensor_readSensor()>100) {
void* args[] = {};
Counter_sm_execute_Counter{&counterl, Counter__event_count, & args);

typedefenum _sm_events_Counter{
Counter__event_count
}Counter_sm_events_Counter;

typedefenum _sm_states_Counter{
Counter__state_Init,
Counter__state_Counting

}Counter_sm_states_Counter;

struct _sm_data_Counter {
Counter_sm_states_Counter __curState;
int8_t current;

e

Counter.h

trigger(counterl, count);

1Y}

Counter.c

Figure 8. A state machine is embedded in a C module as a top level construct. It declares in and out events as well
as local variables, states and transitions. Transitions react to in events, and out events can be fired in actions.
Through bindings (e.g. tickHandler), state machines interact with C code. State machines can be instantiated.
They are transformed to enums for states and events, and a function that executed the state machine using switch
statements. The trigger statement injects events into a state machine instance by calling the state machine function.

Like requirements traces, presence conditions can be at-
tached to any program element. For example, in Fig. 10,
the resetted out event and the on start... transi-
tion in the second state have the resettable presence
condition, where resettable is a reference to a config-
uration flag. Upon transformation, program elements
whose presence condition evaluates to false for a par-
ticular product configuration are simply removed from
the program (and hence will not end up in the gener-
ated binary). This program customization can also be
performed by the editor, effectively supporting variant-
specific editing.

Safe Modules (addresses Cs, uses Wy, W) Safe
modules help prevent writing risky code. For example,
runtime range checking is performed for arithmetic ex-
pressions and assignments. To enable this, arithmetic
expressions are replaced by function calls that perform
range checking and report errors if an overflow is de-
tected. As another example, safe modules also provide
the safeheap statement that automatically frees dy-
namic variables allocated inside its body (see Fig. 14).

3.4 Addressing the Tool Integration Challenge

We have not highlighted tool integration as an explicit
challenge, because it is a cross-cutting issue that affects
all of the challenges above. Nonetheless, in a project
intended to be used by practitioners, this needs to
be addressed. We do that by providing an integrated
environment that provides state-of-the-art IDE support

for C and all of its extensions. While we are still working
on a debugger (see Section 8), all the other IDE support
is available. This includes syntax highlighting, code
completion, static error checking and annotation, quick
fixes and refactorings. Fig. 10 shows a screenshot of the
tool, as we edit a module with a decision table, a state
machine, requirements traces and presence conditions.

4. Design and Implementation

This section discusses the implementation of mbeddr
language extensions. For obvious reasons, this section
cannot be a comprehensive tutorial of MPS. We refer
to the MPS documentation”. However, the section pro-
vides a good overview of what it takes to build these
extensions. We start by explaining in some detail how
MPS works (Section 4.1). We then briefly discuss the
structure of the C core language (Section 4.2). The ma-
jor part of this chapter discusses each of the ways W,
of extending C (Section 4.3 through Section 4.9) based
on the extensions discussed in the previous section.

4.1 MPS Basics

MPS is a language workbench, a comprehensive tool for
defining, extending, composing and using sets of inte-
grated languages. As we will see, it supports the defi-
nition of various language aspects with highly expres-
sive DSLs. MPS’ most important characteristic is that
it is a projectional editor. In parser-based approaches,

"http://www.jetbrains.com/mps/documentation/index.html



J ADemoModule

medule ADemoModule imports {
enum MODE { FAIL: AUTO: MAMNUAL: ¥

statemachine Counter {
in start() <no binding>
step(int[@..10] size) <no binding> | trace R2
out started() <no binding>
resetted() <no binding>
incremented(int[@..10] newval) <no bindings
vars int[e..1@] currentval = @
int[@..108] LIMIT = 10
states (initial - start)
state start {
on gtart] [ ] -> countState { send started(); }

} ol start ~inEvents (cdesignpaper.screenshot.ADemoModule)

state © step ~inEvents (cdesignpaper.screenshot.ADemoModule)

on step [currentval + size > LIMIT] -» start { send resetted(); }
on step [currentVal + size <= LIMIT] -> countState {

Error: wrong number of arguments | + size;
send invremente H
} =
on start [ ] -> start { send resetted(); }
}
H
MODE nextMode (MODE mode, int8_t speed) {
return MODE, FAIL mode == AUTO | mode == MANUAL trace R1;
speed < 5@ AUTO MANMUAL
speed »= 58 | MANUAL MANUAL

Figure 10. A somewhat overloaded example program
in the mbeddr IDE (an instance of MPS). The module
contains an enum, a decision table and a state machine.
Requirements traces are attached to the table and the
step in event, and a presence condition is attached to
an out event and a transitions

users use text editors to enter character sequences that
represent programs. A parser then checks the text for
syntactic correctness and constructs an abstract syntax
tree from the character sequence. The AST contains all
the semantic information expressed by the program.

Projectional editors such as MPS do not use parsers.
In projectional editors, the process happens the other
way round: as a user edits the program, the AST is
modified directly. A projection engine then creates a
representation of the AST that reflects the changes. The
user interacts with this representation. This approach
is well-known from graphical editors: when editing a
UML diagram, users don’t draw pixels onto a canvas,
and a ”pixel parser” then creates the AST. Rather, the
editor creates and instance of uml.Class as you drag a
class from the palette to the canvas. A projection engine
renders the diagram, in this case drawing a rectangle for
the class. This approach can be generalized to work with
any notation, including textual.

In projectional editors, every program element is
stored as a node with a unique ID (UID) in the AST.
References between program elements are based on ac-
tual pointers (references to UIDs). The AST is actually
an ASG, an abstract syntax graph, from the start be-
cause cross-references are first-class rather than being
resolved after parsing. The program is stored using a
generic tree persistence mechanism, often XML.

The projectional approach can deal with arbitrary
syntactic forms such as text, tables, symbols and graph-
ics (graphics expected to be supported by MPS in 2013).
Since no grammar is used, grammar classes are not rel-
evant, and no syntactic ambiguities can result from the
combination of independently developed languages. If
two concepts (possibly defined by different language ex-
tensions) with the same syntax are valid in the same lo-
cation, the user is forced to decide which one to instanti-
ate as she enters the program. In principle, projectional
editing is simpler than parsing, since there is no need
to 7extract” the program structure from a flat textual
source. However, the challenge in projectional editing is
making the editing experience convenient and produc-
tive. Traditionally, projectional editors have had a bad
reputation because the user experience in editing pro-
grams was unacceptable. MPS has solved this problem,
the editing experience is comparable to traditional text
editors. Among others, MPS uses the following strate-
gies to achieve this: aliases are used to instantiate lan-
guage concepts from the code completion menu (e.g. you
can just type for to instantiate a ForStatement); side
transformations support entering trees linearly (e.g. you
can just type + and 3 on the right side of a 2 to get 2+3);
and the code completion menu shows targets of refer-
ences directly instead requiring users to first instantiate
the reference concept (e.g. when pressing Ctrl-Space af-
ter the + in 2+3, you will directly see all visible variables
and arguments in the code completion menu).

4.2 The mbeddr Core Languages

C can be partitioned into expressions, statements, func-
tions, etc. We have factored these parts into separate
language modules to make each of them reusable with-
out pulling in all of C. The expressions language is the
most fundamental language. It depends on no other lan-
guage and defines the primitive types, the correspond-
ing literals and the basic operators. Support for pointers
and user defined data types (enum, struct, union)
is factored into the pointers and udt languages, re-
spectively. statements contains the procedural part of
C, and the modules language covers modularization.
Fig. 11 shows an overview over some of the languages
and constructs.

4.3 Addressing W; (Top-Level Constructs):
Test Cases

In this section we illustrate the implementation of the
test case construct as well as of the assert and fail
statements available inside test cases.

Structure Modules own a collection of IModuleCon-
tents, an interface that defines the properties of every-
thing that can reside directly in a module. All top-level
constructs such as Functions implement IModuleCon-
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Figure 11. Anatomy of the mbeddr language stack:
the diagram shows some of the language concepts, their
relationships and the languages that contain them.

tent. IModuleContent extends MPS’ IIdentifier-
NamedConcept interface, which provides a name prop-
erty. IModuleContent also defines a Boolean property
exported that determines whether the respective mod-
ule content is visible to modules that import this mod-
ule. This property is queried by the scoping rules that
determine which elements can be referenced. Since the
IModuleContent interface can also be implemented by
concepts in other languages, new top level constructs
such as the TestCase in the unittest language can
implement this interface, as long as the respective lan-
guage has a dependency on the modules language,
which defines IModuleContent. Fig. 11 shows some of
the relevant concepts and languages.

Constraints A test case contains a StatementList,
so any C statement can be used in a test case. Statement-
List becomes available to the unit test language through
its dependency on the statements language. unittest
also defines new statements: assert and fail. They
extend the abstract Statement concept defined in the
statements language. This makes them valid in any
statement list, for example in a function body. This is
undesirable, since the transformation of asserts into C
depends on them being used in a TestCase. To enforce
this, a can be child constraint is defined (Fig. 12).

Transformation The new language concepts in
unittest are reduced to C concepts: the TestCase
is transformed to a void function without arguments
and the assert statement is transformed into a report
statement defined in the logging language. The report
statement, in turn, it is transformed into a platform-

concepts constraints AssertStatement {
can be child
(context, scope, parentNode, link, childConcept)->boolean {
parentNode.ancestor<TestCase>.isNotNull;

LI

Figure 12. This constraint restricts an
AssertStatement to be used only inside a TestCase
by checking that at least one of its ancestors is a
TestCase.

void test_exTest {
int x = add(2, 2);

if (M(x == 4)) {
printf("fail:0");

test case exTest { void test_exTest {
int x = add(2, 2); int x = add(2, 2);
assert(0) x == 4; report
} test.FAIL(0)
on '(x == 4);} }}

Figure 13. Two-stage transformation of TestCases.
The TestCase is transformed into a C function using
the logging framework to output error messages. The
report statement is in turn transformed into a printf
statement if we generate for the Windows/Mac envi-
ronment. It would be transformed to something else if
we generated for the actual target device (configured by
the user in the build configuration).

specific way of reporting an error (console, serial line
or error memory). Fig. 13 shows an example of this
two-step process.

4.4 Addressing W, (Statements): Safeheap
Statement

We have seen the basics of integrating new statements
in the previous section where assert and fail ex-
tended the Statement concept inherited from the C
core languages. In this section we focus on statements
that require handling local variable scopes and visibili-
ties. We implement the safeheap statement mentioned
earlier (see Fig. 14), which automatically frees dynam-
ically allocated memory. The variables introduced by
the safeheap statement must only be visible inside its
body and they have to shadow variables of the same
name declared in outer scopes (such as the a declared
in the second line of the measure function in Fig. 14).

Structure The safeheap statement extends State-
ment. It contains a StatementList as its body, as well
as a list of SafeHeapVars. These extend LocalVarDecl,
so they fit with the existing mechanism for handling
variable shadowing (explained below).

Behaviour LocalVarRefs are expressions that refer-
ence LocalVarDecl. A scope constraint, a mechanism
provided by MPS, determines the set of visible vari-
ables for a given LocalVarRef. We implement this con-
straint by plugging into mbeddr’s generic local variable
scoping mechanism using the following approach. The
constraint ascends the containment tree until it finds a
node which implements ILocalVarScopeProvider and



int8_t measure() {
int8_t result = 8;
int8_t* a = malloc(sizeof int8_t);
safeheap(int8_t* a = malloc(186 * sizeof int8_t)) {
for (int8 t i = @8; i < 1@; i++) { (a[i]) = readSensor(); }
I/ —_y~.[ Error: cannot pass a safe heap var to a function } ss a heap var to function

result = cachverage(éi;
¥

// accessing a here would the one declare outside the safeheap
return result;

}

Figure 14. A safeheap statement declares heap vari-
ables which can only be used inside the body of the
statement. When the body is left, the memory is auto-
matically freed. Notice also how we report an error in
case the variable tries to escape.

calls its getLocalVarScope method. A LocalVarScope
has a reference to an outer scope, which is set by find-
ing its ILocalVarScopeProvider ancestor, effectively
building a hierarchy of LocalVarScopes. To get at the
list of the visible variables, the LocalVarRef scope
constraint calls the getVisibleLocalVars method on
the innermost LocalVarScope object. This method re-
turns a flat list of LocalVarDecls, taking into account
that variables owned by a LocalVarScope that is lower
in the hierarchy shadow variables of the same name
from a higher level in the hierarchy. So, to plug the
SafeHeapStatement into this mechanism, it has to im-
plement ILocalVarScopeProvider and implement the
two methods shown in Fig. 15.

public LocalVarScope getLocalVarScope(node<> ctx, int stmtIdx) {
LocalVarScope scope =
new LocalVarScope(getContainedLocalVariables());
node<ILocalVarScopeProvider> outerScopeProvider =
this.ancestor<ILocalVarScopeProvider>;
if (outerScopeProvider != null)
scope.setOuterScope (outerScopeProvider.
getLocalVarScope (this, this.index));
return scope;
}
public sequence<node<LocalVariableDecl>> getContainedLocalVars() {
this.vars;

}

Figure 15. A safeheap statement implements the
two methods declared by the ILocalVarScopeProvider
interface. getContainedLocalVariables returns the
LocalVarDecls that are declared between the parenthe-
ses (see Fig. 14). getLocalVarScope constructs a scope
that contains these variables and then builds the hier-
archy of outer scopes by relying on its ancestors that
also implement ILocalVarScopeProvider. The index
of the statement that contains the reference is passed
in to make sure that only variables declared before the
reference site can be referenced.

Type System To make the safeheap statement work
correctly, we have to ensure that the variables declared
and allocated in the safeheap statement do not escape

checking rule check_safeVarRef for concept = LocalVarRef as lvr {
boolean isInSafeHeap =
lvr.ancestor<SafeHeapStatement>.isNotNull;
boolean isInFunctionCall =
lvr.ancestor<FunctionCall>.isNotNull;
boolean referencesSafeHeapVar =
lvr.var.parent.isInstanceOf (SafeHeapStatement) ;
if (isInSafeHeap && isInFunctionCall && referencesSafeHeapVar)
error "cannot pass a safe heap var to a function" -> lvr;

}

Figure 16. This type system rule reports an error if a
reference to a local variable declared and allocated by
the safeheap statement is used in a function call.

from its scope. To prevent this, an error is reported if a
reference to a safeheap variable is passed to a function.
Fig. 16 shows the code.

4.5 Addressing W3 (Expressions): Decision
Tables

Expressions are different from statements in that they
can be evaluated to a wvalue as the program executes.
During editing and compilation, the type of an expres-
sion is relevant for the static correctness of the program.
So extending a language regarding expressions requires
extending the type system rules as well.

Fig. 5 shows the decision table expression. It is eval-
uated to the expression in a cell c¢ if the column header
of ¢ and the row header of ¢ are true®. If none of the
condition pairs is true, then the default value, FAIL in
the example, is used as the resulting value. A decision
table also specifies the type of the value it will evaluate
to, and all the expression in content cells have to be
compatible with that type. The type of the header cells
has to be Boolean.

Structure The decision table extends the Expression
concept defined in the expressions language. Decision
tables contain a list of expressions for the column head-
ers, one for the row headers and another one for the
result values. It also contains a child of type Type to
declare the type of the result expressions, as well as a
default value expression. The concept defines an alias
dectab to allow users to instantiate a decision table in
the editor. Obviously, for non-textual notations such as
the table, the alias will be different than the concrete
syntax (in textual notations, the alias is typically made
to be the same as the "leading keyword”, e.g. assert).

Editor Defining a tabular editor is straight forward:
the editor definition contains a table cell, which del-
egates to a Java class that implements ITableModel.
This is similar to the approach to the approach used by
Java Swing. It provides methods such as getValueAt (

8 Strictly speaking, it is the first of the cells for which the headers
are true. It is optionally possible to use static verification based
on an SMT solver to ensure that only one of them will be true
for any given set of input values



int row, int col) or deleteRow(int row), which
have to be implemented for any specific table-based ed-
itor. To embed another node in a table cell (such as the
expression in the decision table), the implementation of
getValueAt simply returns this node.

Type System As mentioned above, MPS uses unifica-
tion in the type system. Language concepts specify type
equations that contain type literals (such as boolean)
as well as type variables (such as typeof (dectab)).
The unification engine then tries to assign values to
the type variables so that all applicable type equations
become true. New language concepts contribute addi-
tional type equations. Fig. 17 shows those for decision
tables. New equations are solved along with those for
existing concepts. For example, the typing rules for a
ReturnStatement ensure that the type of the returned
expression is the same or a subtype of the type of the
surrounding function. If a ReturnStatement uses a de-
cision table as the returned expression, the type calcu-
lated for the decision table must be compatible with the
return type of the surrounding function.

// the type of the whole decision table expression
// is the type specified in the type field
typeof (dectab) :==: typeof (dectabc.type);
// for each of the expressions in
// the column headers, the type must be boolean
foreach expr in dectab.colHeaders {
typeof (expr) :==: <boolean>;

// ... same for the row headers
foreach expr in dectabc.rowHeaders {
typeof (expr) :==: <boolean>;

// the type of each of the result values must
// be the same or a subtype of the table itself
foreach expr in dectab.resultValues {
infer typeof (expr) :<=: typeof (dcectab);
}
// ... same for the default
typeof (dc.def) :<=: typeof (dectab);

Figure 17. The type equations for the decision table
(see the comments for details).

4.6 Addressing W, (Types and Literals):
Physical Units

To illustrate adding new types and literals we use phys-
ical units. We had already shown example code earlier
in Fig. 9.

Structure Derived and convertible UnitDeclarations
are IModuleContents. Derived unit declarations spec-
ify a name (mps, kmh) and the corresponding SI base
units (m, s) plus an exponent; a convertible unit decla-
ration specifies a name and a conversion formula. The
backbone of the extension is the UnitType which is
a composite type that has another type (int, float)
in its valueType slot, plus a unit (either an SI base
unit or a reference to a UnitDeclaration). It is repre-
sented in programs as baseType/unit/. We also pro-

vide LiteralWithUnits, which are expressions that
contain a valueLiteral and, like the UnitType, a unit
(so we can write 100 kmh).

Scoping LiteralWithUnits and UnitTypes refer to a
UnitDeclaration, which is a module content. Accord-
ing to the visibility rules, valid targets for the reference
are the UnitDeclarations in the same module, and the
exported ones in all imported modules. This rule applies
to any reference to any module contents, and is imple-
mented generically in mbeddr. Fig. 18 shows the code
for the scope of the reference to the UnitDeclaration.
We use an interface IVisibleNodeProvider, (imple-
mented by Modules) to find all instances of a given type.
The implementation of visibleContents0fType sim-
ply searches through the contents of the current and
imported modules and collects instances of the spec-
ified concept. The result is used as the scope for the
reference.

link {unit} search scope:
(model, scope, refNode, enclosingNode, operationContext)
->sequence<node<UnitDeclaration>> {
enclosingNode.ancestor<IVisibleNodeProvider>.
visibleContents0fType(concept/UnitDeclaration/); }

Figure 18. The visibleContentsOfType operation
returns all instances of the concept argument in the cur-
rent module, as well as all exported instances in modules
imported by the current module.

Type System We have seen how MPS uses equations
and unification to specify type system rules. However,
there is special support for binary operators that makes
overloading for new types easy: overloaded operations
containers essentially specify 3-tuples of (leftArgType,
rightArgType, resultType) plus applicability conditions
to match type patterns and decide on the resulting type.
Typing rules for new (combinations of) types can be
added by specifying additional 3-tuples. Fig. 19 shows
the overloaded rules for C’s MultiExpression (the lan-
guage concept the implements the multiplication oper-
ator *) when applied to two UnitTypes: the result type
will be a UnitType as well, where the exponents of the
SI units are added.

While any two units can legally be used with * and
/ (as long as we compute the resulting unit exponents
correctly), this is not true for + and -. There, the two
operand types must be the same (in terms of their rep-
resentation in ST base units). We express this by using
the following expression in the is applicable section:
leftOpType.unit.isSameAs(rightOpType.unit).

The typing rule for the LocalVariableDeclaration
requires that the type of the init expression must be
the same or a subtype of the type of the variable.
To make this work correctly, we have to define a type
hierarchy for UnitTypes. We achieve this by defining



operation concepts: MultiExpression
left operand type: new node<UnitType>()
right operand type: new node<UnitType>()
is applicable:
(operation, leftOpType, rightOpType)->boolean {
node<> resultingValueType = operation type(operation,
leftOpType.valueType , rightOpType.valueType )
resultingValueType != null; }
operation type:
(operation, leftOpType, rightOpType)->node<> {
node<> resultingValueType = operation type(operation,
leftOpType.valueType, rightOpType.valueType );
UnitType.create(resultingValueType,
leftOpType.unit.toSIBase().add(
rightOpType.unit.toSIBase(),
1))

}

Figure 19. This code overloads the MultiExpression
to work for UnitTypes. In the is applicable section
we check whether there is a typing rule for the two value
types (e.g. int * float). This is achieved by trying to
compute the resulting value type. If none is found, the
types cannot be multiplied. In the computation of the
operation type we create a new UnitType that uses
the resultingValueType as the value type and then
computes the resulting unit by adding up the exponents
of component SI units of the two operand types.

the supertypes for each UnitType: the supertypes are
those UnitTypes whose unit is the same, and whose
valueType is a supertype of the current UnitType’s
value type. Fig. 20 shows the rule.

subtyping rule supertypeOf_UnitType
for concept = UnitType as ut {
nlist<> res = new nlist<>;
foreach st in immediateSupertypes(ut.valueType) {
res.add(UnitType.create(st, ut.unit.copy));
}
return res;

}

Figure 20. This typing rule computes the direct super-
types of a UnitType. It iterates over all immediate su-
pertypes of the current UnitType’s value type, wrapped
into a UnitType with the same unit as the original one.

4.7 Addressing W5 (Alternative
Transformations): Range Checking

The safemodules language defines an annotation to
mark Modules as safe (we will discuss annotations in
the next subsection). If a module is safe, the binary
operators such as + or * are replaced with calls to
functions that, in addition to performing the addition
or multiplication, perform a range check.

Transformation The transformation that replaces
the binary operators with function calls is triggered by
the presence of this annotation on the Module which
contains the operator. Fig. 21 shows the code. The
@safeAnnotation != null checks for the presence of
the annotation. MPS uses priorities to specify relative

concept PlusExpression
condition ({node, genContext, operationContext)->boolean {
node.ancestor< ImplementationModule>.@safeAnnotation != null;
}

-->
module dummy imports arithmeticOps {

wvoid dummy() {

<TF addWithRangeCheck($COPY_SRC$|1!, $COPY SRC$!2.) | TF3;

ek

Figure 21. This reduction rule transforms instances
of PlusExpression into a call to a library function
addWithRangeChecks, passing in the left and right ar-
gument of the + using the two COPY_SRC macros. The
condition ensures that the transformation is only ex-
ecuted if the containing Module has a safeAnnotation
attached to it. A transformation priority defined in the
properties of the transformation makes sure it runs be-
fore the C-to-text transformation.

orderings of transformations, and MPS then calculates
a global transformation order for any given model. We
use a priority to express that this transformation runs
before the final transformation that maps the C tree to
C text for compilation.

4.8 Addressing W5 (Meta Data):
Requirements Traces

Annotations are concepts whose instances can be added
as children to a node N without this being specified in
the definition of N’s concept. While structurally the an-
notations are children of the annotated node, the editor
is defined the other way round: the annotation editor
delegates to the editor of the annotated element. This
allows the annotation editor to add additional syntax
around the annotated element. Optionally, it is possi-
ble to explicitly restrict the concepts to which a partic-
ular annotation can be attached. We use annotations in
several places: the safe annotation discussed in the pre-
vious section, the requirements traces and the product
line variability presence conditions.

Structure We illustrate the annotation mechanism
based on the requirements traces. Fig. 22 shows the
structure. Notice how it extends the MPS-predefined
concept NodeAttribute (it sould be named Node-
Annotation). It also specifies a role, which is the name
of the property that is used to store TraceAnnotations
under the annotated node.

Editor As mentioned above, in the editor, annotations
look as if they surrounded their parent node (although
they are in fact children). Fig. 23 shows the definition
of the editor of the requirements trace annotation (and
an example is shown in Fig. 10): it puts the trace to
the right of the annotated node. Since MPS is a pro-
jectional editor, there is base-language grammar that
needs to be made aware of the additional syntax in the



concept TraceAnnotation extends NodeAttribute implements <none>
children:
TraceKind tracekind 1
TraceTargetRef refs 0..n
concept properties:
role = trace
concept links:
attributed = BaseConcept

Figure 22. Annotations have to extend the MPS-
predefined concept NodeAttribute. They can have an
arbitrary child structure (tracekind, refs), but they
have to specify the role (the name of the property that
holds the annotated child under its parent) as well as
the attributed concept: the annotations can only be
attached to instances of this concept (or subconcepts).

editer for concept TraceAnnotation
node cell layout:
[> [>|attributed node <] ?[> % tracekind |% F(> % refs % <) |<]|<]

Figure 23. The editor definition for the ReqTrace
annotation (an example trace annotation is shown in
Fig. 10). It consists of a vertical list [/ .. /] with two
lines. The first line contains the reference to the require-
ment. The second line uses the attributed node con-
struct to embed to the editor of the program node to
which this annotation is attached. So the annotation
is always rendered right on top of whatever syntax the
original node uses.

program. This is key to enabling arbitrary annotations
on arbitrary program nodes.

Annotations are typically attached to a program
node via an intention. Intentions are an MPS editor
mechanism: a user selects the target element, presses
Alt-Enter and selects Add Trace from the popup
menu. Fig. 24 shows the code for the intention that
attaches a requirements trace.

intention addTrace for BaseConcept {
description(node)->string {
"Add Trace"; }
isApplicable(node)->boolean {
node.@trace == null; }
execute(editorContext, node)->void {
node.@trace = new node<TraceAnnotation>(); }

}

Figure 24. An intention definition consists of three
parts. The description returns the string that is shown
in the intentions popup menu. The isApplicable sec-
tion determines under which conditions the intention
is avavailable in the menu — in our case, we can only
add a trace if there is no trace yet on the target node.
Finally, the execute section performs the action asso-
ciated with the intention. In our case we simply put an
instance of TraceAnnotation into the @trace property
of the target node.

4.9 Addressing W; (Restriction): Preventing
Use of Reals Numbers

We have already seen in Section 4.3 how constraints can
prevent the use of specific concepts in certain contexts.
We use the same approach for preventing the use of real
number types inside model-checkable state machines:
a can be ancestor constraint in the state machine
prevents instances of float in the state machine if the
verifiable flag is set.

5. Experiences

This paper is about the design and rationale of an ex-
tensible C language for embedded development, based
on language engineering techniques. In Section 5.1 we
provide a brief overview over our experiences in imple-
menting mbeddr, including the size of the project and
the efforts spent. Section 5.2 discusses to what degree
this approach leads to improvements in embedded soft-
ware development.

| Element | Count [ LOC-Factor |
Language Concepts 260 3
Property Declarations | 47 1
Link Declarations 156 1
Editor Cells 841 0.25
Reference Constraints | 21 2
Property Constraints | 26 2
Behavior Methods 299 1
Type System Rules 148 1
Generation Rules 57 10
Statements 4919 1.2
Intentions 47 3
Text Generators 103 2
Total LOC 8,640

Figure 25. We count various language definition ele-
ments and then use a factor to translate them into lines
of code. The reasons why many factors are so low (e.g.
reference constraints or behavior methods) is that the
implementation of these elements is made up of state-
ments, which are counted separately. In case of editor
cells, typically several of them are on the same line,
hence the fraction. Finally, the MPS implementation
language supports higher order functions, so some state-
ments are rather long and stretch over more than one
line: this explains the 1.2 in the factor for statements.

5.1 Language Extension

Size Typically, lines of code are used to describe the
size of a software system. In MPS, a ”line” is not neces-
sarily meaningful. Instead we count important elements
of the implementation and then estimate a correspond-
ing number of lines of code. Fig. 25 shows the respective
numbers for the core, i.e. C itself plus unit test sup-



port, decision tables and build/make integration (the
table also shows how many LOC equivalent we assume
for each language definition element, and the caption
explains to some extent the rationale for these factors).
According to our metric the C core is implemented with
less than 10,000 lines of code.

Let us look at an incremental extension of C. The
components extension (interfaces, components, pre and
post conditions, support for mock components in test-
ing and a generator back to plain C) is ca. 3,000 LOC
equivalent. The state machines extension is ca. 1,000.
Considering the fact that these LOC equivalents rep-
resent the language definition (incl. type systems and
generators) and the IDE (incl. code completion, syntax
coloring, some quick fixes and refactorings), this clearly
speaks to the efficiency of MPS for language develop-
ment and extension.

Effort In terms of effort, the core C implementation
has been ca. 4 person months divided between three
people. This results in roughly 2,500 lines of code per
person month. Extrapolated to a year, this would be
7,500 lines of code per developer. According to Mc-
Connell®, in a project up to 10,000 LOC, a developer
can typically do between 2,000 and 25,000 LOC. The
fact that we are at the low end of this range can be
explained by the fact that MPS provides very expres-
sive languages for DSL development: you don’t have to
write a lot of code to express a lot about a DSL. In-
stead, MPS code is relatively dense and requires quite
a bit of thought. Pair programming is very valuable in
language development.

Once a developer has mastered the learning curve,
language extension can be very productive. The state
machines and components extension have both been
developed in about a month. The unit testing extension
or the support for decision tables can be implemented
in a few days.

Language Modularity, Reuse and Growth Mod-
ularity and composition is central to mbeddr.

Building a language extension should not require
changes to the base languages. This requires that the
extended languages are built with extension in mind.
Just like in object-oriented programming, where the
only methods can be overridden, only specific parts of
a language definition can be extended or overwritten.
The implementation of the default extensions served as
a test case to confirm that the C core language is in fact
extensible. We found a few problems, especially in the
type system and fixed them. None of these fixes were
“hacks” to enable a specific extension — they were all
genuine mistakes in the design of the C core. Due to

9 http://www.codinghorror.com/ blog/2006/07/diseconomies-of-
scale-and-lines-of-code.html

the broad spectrum covered by our extensions, we are
confident that the current core language provides a high
degree of extensibility.

Independently developed extensions should not in-
teract with each other in unexpected ways. While MPS
provides no automated way of ensuring this, we have not
seen such interactions so far. The following steps can be
taken to minimize the risk of unexpected interactions.
Generated names should be qualified to make sure that
no symbol name clashes occur in the generated C code.
An extension should never consume ”scarce resources”:
for example, it is a bad idea for a new Statement to
require a particular return type of the containing func-
tion, or change that return type during transforma-
tion. Two such badly designed statements cannot be
used together because they will likely require differ-
ent return types. Note that unintended syntactic inte-
gration problems between independently developed ex-
tensions (known from traditional parser-based systems)
can never happen in MPS. This was one of the reasons
to use MPS for mbeddr.

Modularity should also support reuse in contexts not
anticipated during the design of a language module.
Just as in the case of language extension (discussed
above), the to-be-reused languages have to be writ-
ten in a suitable way so that the right parts can be
reused separately. We have shown this with the state
machines language. State machines can be used as top
level concepts in modules (binding out events to C func-
tions) and also inside components (binding out events
to component methods). Parts of the transformation of
a state machine have to be different in these two cases,
and these differences were successfully isolated to make
them exchangeable. Also, we reuse the C expression lan-
guage inside the guard conditions in a state machine’s
transitions. We use constraints to prevent the use of
those C expression that are not allowed inside transi-
tions (for example, references to global variables). Fi-
nally, we have successfully used physical units in com-
ponents and interfaces.

Summing up, these facilities allow different user groups
to develop independent extensions, growing the mbeddr
stack even closer towards their particular domain.

Who can create Extensions? mbeddr is built to be
extended. The question is by whom. This question can
be addressed in two ways: who is able to extend it from
a skills perspective, and who should extend it?

Let us address the skills question first. We find that
it takes about a month for a developer with solid object-
oriented programming experience to become proficient
with MPS and the structures of the mbeddr core lan-
guages. This may be reduced by better documentation,
but a steep learning curve will remain. Also, designing



good languages, independent of their implementation,
is a skill that requires practice and experience. So, from
this perspective we assume that in any given organiza-
tion there should be a select group of language develop-
ers who build the extensions for the end users. Notice
that such an organizational structure is common today
for frameworks and other reusable artifacts.

There is also the question of who should create exten-
sions. One could argue that, as language development
becomes simpler, an uncontrolled growth in languages
could occur, ultimately resulting in chaos. This concern
should be addressed with governance structures that
guide the development of languages. The bigger the or-
ganization is, the more important such governance be-
comes. The modular nature of the mbeddr language ex-
tensions makes this problem much easier to tackle. In
an large organization we assume that a few language
extensions will be strategic: aligned with the needs of
the whole organization, well-designed, well tested and
documented, implemented by a central group, and used
by many developers. In addition, small teams my de-
cide to develop their own, smaller extensions. Their fo-
cus is much more local, and the development requires
much less coordination. These could be developed by
the smaller units themselves.

5.2 Improvements in Embedded Development

Productivity and Quality At this point we have
not yet conducted large-scale industry projects with the
mbeddr stack. We are currently in the process of set-
ting up two real-world projects. However, two prelimi-
nary end-user experiments have been performed. The
mbeddr development team itself has created a non-
trivial case study based on the OSEK operating sys-
tem and Lego Mindstorms. Second, a group of students
from the University of Augsburg has developed a set of
language extensions for controlling a quadcopter. Both
cases resulted in much less code, a clearer implemen-
tation and fewer bugs compared to what we expected
from traditional embedded software development. Both
projects also developed extensions of the existing stack:
the OSEK/Mindstorms project extended the build lan-
guage to integrate with the NXT OSEK build system
and the quadcopter project has developed languages for
controlling and planning the routing for the quadcopter.
The fact that formal verification is directly integrated
into mbeddr, and the fact the requirements traceabil-
ity and product line variability are directly supported
promises to improve the overall quality of systems built
with mbeddr.
Size and Practicability = We have run scalability
tests to ensure that the environment scales to at least
the equivalent of 100.000 lines of C code. A significant
share of embedded software is below this limit and

can confidently be addressed with mbeddr. We do not
have any data which indicates significant performance
degradation for larger systems, and we believe that
by structuring systems into separate partitions that
are transformed, compiled and linked separately, larger
systems are feasible as well. However, to be sure, this
requires further scalability testing.

Suitability of the Currently Available Exten-
sions Based on years of experience in embedded
software development and dozens of conversations with
practitioners in the field we are confident that the ex-
tensions we chose provide useful benefits in real-world
embedded software development projects. In particu-
lar, state machines, interfaces and components as well
as traceability and product line support are relevant for
almost every developer we talked to and available in
several established modeling tools.

However, while we are confident that the default
extensions are useful in practice, they mainly serve as
a proof-of-concept for the idea of incremental, modular
language extension, where end-user organizations build
their own custom extensions that fit their domain.

6. Related Work

mbeddr touches several areas of research, so we we have
structured the this section accordingly, one paragraph
for each area: DSLs in embedded development, specific
extensions of C, language and IDE extension and static
analysis and formal verification.

DSLs in Embedded Development In addition to
the general-purpose embedded software modeling tools
mentioned before (Simulink and ASCET), much more
specific languages have been developed. Examples in-
clude Feldspar [1], a DSL embedded in Haskell for dig-
ital signal processing; Hume [18], a DSL for real-time
embedded systems as well as the approach described in
[17], which use DSLs for addressing quality of service
concerns in middleware for distributed real-time sys-
tems. Our approach is different because our DSLs are
directly integrated into C, whereas the examples men-
tioned in this paragraph are standalone DSLs that gen-
erate C code. As part of our future work we will inves-
tigate if and how some of these languages could benefit
from a tighter integration with C based on mbeddr.

Specific Extensions of C Extending C to adapt it to
a particular problem domain is not new. For example,
Palopoli et al. present an extension of C for real time
applications [29], Boussinot proposes an extension for
reactive systems [3] and Yosi Ben-Asher et al. present
an extension for shared memory parallel systems [2].
These are all specific extensions of C, typically created
by invasively changing the C grammar. These exten-
sions do not include IDE support, and the approach



does not provide a framework for modular, incremen-
tal extension. However, these are all good examples of
extensions that could be implemented as language ex-
tensions in mbeddr, if the need arises.

In contrast to these specific extensions of C, the Xoc
extensible C compiler described by Cox [8] support ar-
bitrary extensions. It uses a parser-based approach and
uses source-to-source translation to transform modular
C extensions into regular C code. In contrast to mbeddr,
Cox’ approach is limited by the fact that is uses a tra-
ditional parser based approach and that it does not ad-
dress IDE extension.

There are also safer dialects of C, basically restricted

sub-languages. Examples include Cyclone [21] and the
Misra C standard [28]. We are actively working on im-
plementing checks and restrictions to implement the
Misra C standard as a language extension using restric-
tion (W7)
Language and IDE Extension mbeddr itself is not
a language engineering tool — we rely on the MPS lan-
guage workbench. Therefore the discussion of language
engineering approaches and tools as part of related work
will look at how these tools and approaches address lan-
guage engineering, and how this differs from the MPS-
based approach used in mbeddr.

Language extension is not a new idea. The Lisp com-
munity has always considered language extension es-
sential to using Lisp effectively. Guy Steele’s OOPSLA
1998 keynote Growing a Language (and a related jour-
nal article [22]) is maybe the most well-known expres-
sion of the idea, and Thrift’s extension of Lisp with
constructs for logic programming [36] is a concrete ex-
ample. Obviously, Lisp extension could not have been
used as a basis for mbeddr, since it is based on C.

The landmark work of Hudak [19] introduces em-
bedded DSLs as language extensions of Haskell. While
Haskell provides advanced concepts that enable such ex-
tensions, the new DSLs are essentially just libraries built
with the host language and are not first class language
entities: they do not define their own syntax, compiler
errors are expressed in terms of the host language, no
custom semantic analyses are supported and no spe-
cific IDE-support is provided. Essentially all internal
DSLs expressed with dynamic languages such as Ruby
or Groovy, but also those embedded in static languages
such as Scala suffer from these limitations.

Several works avoid these limitations by making lan-
guage definition and extension first class. Early exam-
ples include the Synthesizer Generator [33] as well as the
Meta Environment [24]. Both generate editors and other
IDE aspects from a language definition. The topic is still
actively researched. For example, Bravenboer et al. [5]
and Dinkelacker [11] provide custom concrete syntax,
Bracha [4] provides pluggable type systems and Erweg

et al. [15] discuss modular IDE extensions. Eisenberg
and Kiczales propose explicit programming [13] which
supports semantic extension as well as editing exten-
sions (concrete syntax) for a given base language.

Our approach is similar in that we provide extensions
of syntax, type systems, semantics and IDE support for
a base language. mbeddr is different in that it extends
C, in that we use a projectional editor and in that
we address IDE extension including advanced features
such as type systems, refactorings and the debugger.
The use of a projectional editor is especially significant,
since this enables the use of non-textual notations and
annotation of cross-cutting meta data.

A particularly interesting comparison can be made
with the Helvetia system by Renggli et al. [32]. It sup-
ports language embedding and extension of Smalltalk
using homogeneous extension, which means that the
host language (Smalltalk) is also used for defining the
extensions (in contrast to some of the embedded DSLs
discussed above, Helvetia can work with custom gram-
mars for the DSLs). The authors argue that the ap-
proach is independent of the host language and could be
used with other host languages as well. While this is true
in principle, the implementation strategy heavily relies
on some aspects of the Smalltalk system that are not
present for other languages, and in particular, not in C.
Also, since extensions are defined in the host language,
the complete implementation would have to be redone if
the approach were used with another language. This is
particularly true for IDE support, where the Smalltalk
IDE is extended using this IDE’s APIs. mbeddr uses
a heterogeneous approach which does not have these
limitations: MPS provides a language-agnostic frame-
work for language and IDE extension that can be used
with any language, once the language is implemented
in MPS.

In the same paper, Renggli and his colleagues in-
troduce three different flavors of language extension. A
pidgin creatively bends the existing syntax of the host
language to to extend its semantics. A creole intro-
duces completely new syntax and custom transforma-
tions back to the host language. An argot reinterprets
the semantics of valid host language code. mbeddr does
not use any pidgins, because C’s syntax is not very flex-
ible, and because we have the language workbench at
our disposal, so it is easier to implement creoles. W7 -
W, are creoles. In contrast, W5 is an argot. It provides
different semantics for existing constructs. Wg is yet dif-
ferent. New syntax is introduced, but it can be attached
to any language concept. The semantics is only relevant
to additional tools, not to the core C program — no
translation back to C takes place. W7 removes concepts
in new contexts and hence also does not fit with the
categorization.



Cedalion [10] is a host language for defining inter-
nal DSLs. It uses a projectional editor and semantics
based on logic programming. Both Cedalion and lan-
guage workbenches such as MPS aim at combining the
best of both worlds from internal DSLs (combination
and extension of languages, integration with a host lan-
guage) and external DSLs (static validation, IDE sup-
port, flexible syntax). Cedalion starts out from inter-
nal DSLs and adds static validation and projectional
editing, the latter avoiding ambiguities resulting from
combined syntaxes. Language workbenches start from
external DSLs and add modularization, and, as a con-
sequence of implementing base languages with the same
tool, optional tight integration with general purpose
host languages. We could not have used Cedalion as the
platform for mbeddr tough, since we implemented our
own base language (C), and the logic-based semantics
would not have been a good fit.

Our work relates to macro systems such as Open
Java [35]in that mbeddr customizes the translation of
language extensions. However, mbeddr uses non-local
transformations as well; those are not easily express-
ible with macros. Also, traditionally, macros have not
addressed IDE extension.

Finally, open compilers such as Jastadd [14] are re-
lated in that they support language extension and cus-
tom transformation. However, while open compilers can
typically be extended with independent modules, the in-
put language often requires invasive adaptation. Also,
open compilers do not address IDE extension.

Static Analysis and Formal Verification Static
analysis of C programs is an active research area (as ex-
emplified by [23, 27, 30]), and several commercial tools
are available, such as the Escher C Verifier'® or Kloc-
work!'. We believe that we can simplify some of the
analyses provided by these tools by providing exten-
sions to C which embody relevant semantics directly,
avoiding the need to reverse engineer the semantics
for static analysis. For example, by expressing state-
based behavior directly using state machines instead of
a low level C implementation, the state space relevant
to a model checker can be reduced significantly, making
model checking less costly.

Another class of tools (such as Frama-C1?) requires
users to annotate C code with ”"semantic hints” to re-
duce the state space and enable meaningful verification.
We plan to integrate Frama-C into mbeddr, expecting
the following benefits: first, we will provide a language
extension for the hints, so users don’t have to use com-
ments to specify them. IDE support will be provided.
Second, we will provide C extensions on a higher level

10 http:/ /www.eschertech.com/products/ecv.php
M http:/ /www.klocwork.com/
12 http://frama-c.com/

of abstraction with semantics that can be used to gen-
erate the verification hints. This way, users don’t have
to deal with the hints explicitly.

7. Discussion

Why MPS? A central pillar to our work is MPS.
Our choice of MPS is due to its support for all aspects of
language development (structure, syntax, type systems,
IDE, transformations), its support for flexible syntax as
a consequence of projectional editing and its support for
advanced modularization and composition of languages.
The ability to attach annotations to arbitrary program
elements without a change to that element’s definition
is another strong advantage of MPS (we we use this for
presence conditions and trace links, for example). No
other freely available tool provides support for all those
aspects, but some are supported by other tools. For ex-
ample, Eclipse Xtext!'? and its accompanying tool stack
supports abstract and concrete syntax definition, IDE
support and transformations, but it is weak regarding
non-textual syntax and modularization and composi-
tion of languages. TU Delft’s Spoofax'# concise type
system definition. Intentional Software'® supports ex-
tremely flexible syntax [34] and language composition
(it is a projectional editor) but is not easily available.

Another important reason for our choice is the matu-
rity and stability of MPS and the fact that it is backed
by a major development tool vendor (JetBrains).

While the learning curve for MPS is significant (a
developer who wants to become proficient in MPS lan-
guage development has to invest at least a month),
we found that is scales extremely well for larger and
more sophisticated languages. This is in sharp contrast
to some of the other tools the authors worked with,
where implementing simple languages is quick and easy,
and larger and more sophisticated languages are dispro-
portionately more complex to build. This is illustrated
by very reasonable effort necessary for implementing
mbeddr (see Section 5.1).

Projectional Editing Projectional editing is often
considered a drawback because the editors feel some-
what different and the programs are not stored as text,
but as a tree (XML). We already highlighted that MPS
does a good job regarding the editor experience, and
we feel that the advantages of projectional editors re-
garding syntactic freedom far outweigh the drawback
of requiring some initial familiarization. Our experience
so far with about ten users (pilot users from industry,
students) shows that after a short guided introduction
(ca. 30 minutes) and an initial accomodation period (ca.

13 http://eclipse.org/xtext
M http://spoofax.org
15 http://intentsoft.com



1-2 days), users can work productively with the projec-
tional editor. Regarding storage, the situation is not any
worse than with current modeling tools that store mod-
els in a non-textual format, and MPS does provide good
support for diff and merge using the projected syntax.

Other Base Languages The technology described in
this paper can be applied to other base languages. Jet-
Brains, for example, is extending Java for building web
applications. The advantage of using a heterogeneous
approach (see the Helvetia discussion in Related Work)
is that the tools built for language engineering are inde-
pendent of the extended languages. No new frameworks
or tools have to be developed or learned. Of course the
to-be extended language has to be implemented in the
tool stack first. We have discussed the effort for doing
this in the case of C in Section 5.

Other Application Domains mbeddr’s domain is
embedded systems. However, the same approach can
be used in other domains as well. As mentioned in the
previous paragraph, JetBrains are developing Java ex-
tensions for web application development. These exten-
sions include support for object-relational mapping, web
page templating, and portability of application logic be-
tween the client and server by translating the same code
into Java and Javascript. In internal communications
with the authors, JetBrains have reported significant
improvements in productivity and significantly reduced
time (days and weeks instead of months) for getting new
developers up to speed in web application development.
JetBrains use this approach to develop the Youtrack
bug tracking software, among others.

8. Conclusion and Future Work

In this paper we presented the mbeddr system, a large
scale use of language engineering technologies in gen-
eral and language workbenches in particular. We show
how domain-specific extensions of C language can be
used to address important challenges in embedded soft-
ware development. To illustrate these ways of extension
we provide a set of concrete examples and their im-
plementation in the mbeddr system. The feedback on
mbeddr received from practitioners so far convinces us
that language engineering approaches have great poten-
tial to dramatically improve the development of embed-
ded software. The mbeddr project also serves as a strong
validation of the power and maturity of projectional lan-
guage workbenches, in particular, MPS. The effort for
building the C language and IDE and especially the in-
cremental effort of building extensions is significantly
lower than we expected when we started the project.

To realize the full potential of the mbeddr approach,
more research is required in the following two major
directions:

Extension of the Approach We are almost finised
with a debugger that can be extended together with lan-
guage extensions. While there is existing research (such
as [26, 38]), there are still open questions such as how
to calculate custom watches and how to avoid gener-
ating debug-specific code into the resulting C. We will
also work more on formal analyses, including mapping
higher-level DSLs to state machines and reinterpreting
the verification results in the context of the higher-level
DSL, exploring the relationship between general pro-
gram analysis and language extensions as well as using
SAT solvers to verify the structural integrity of variant-
aware programs. In addition, we will add support for
graphical notations for state machines and data flow
block diagrams once MPS’ support for graphical edi-
tors becomes available in the MPS 3.0 version.

Real-World Feasibility Since mbeddr is intended
to be used for real-world software development, a ma-
jor part of our future work is the validation of the ap-
proach in real-world embedded development projects.
We are currently building a set of extensions specific
to our application partner Sick AG who use mbeddr
to build systems in the sensors domain. We are also
setting up a project to develop a smart metering de-
vice. We will measure the increase in productivity and
maintainability in order to provide solid data about the
full potential of this approach. This line of future work
will also include an automatic importer for functions,
structs, constants, enums and typdefs defined in ex-
isting header files to simplify working with legacy code.
We are also considering an importer for C implementa-
tion code (as long as it does not contain preprocessor
statements). This will not be fully automatic, since some
of the changes to mbeddr C require user decisions.
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