
Extensible Debuggers for Extensible Languages

Domenik Pavletic

1

, Syed Aoun Raza

1

, Markus Voelter

2

, Bernd Kolb

1

, and Timo Kehrer

3

1

itemis AG, {pavletic,raza,kolb}@itemis.de

2

independent/itemis AG, voelter@acm.org

3

University of Siegen, Germany kehrer@informatik.uni-siegen.de

Abstract

Language workbenches significantly reduce the e↵ort
for building extensible languages. However, they do
not facilitate programmers with built-in debugging
support for language extensions. This paper presents
an extensible debugger architecture that enables de-
bugging of language extensions. This is established by
defining mappings between the base language and the
language extensions. We show an implementation of
our approach for the mbeddr language workbench.

1 Introduction

Debuggers for general purpose languages (e. g., C or
Python) can be hand-crafted specifically for the con-
structs provided by the language, due to a fixed set
of language contructs. In contrast, modern language
engineering allows the development of extensible lan-
guages [3], such as mbeddr [2], where users can add
new constructs in an incremental and modular way.
The constructs introduced by a language extension
are usually translated to semantically equivalent base
language code during compilation. For example, a
foreach statement that supports iterating over a C
array without a counter variable, would be translated
to a C for statement. Vice versa, a for statement
can be reengineered to a foreach.

To make debugging extensible languages useful to
the language user, it is not enough to debug programs
after extensions have been translated back to the base
language (using an existing debugger for the base lan-
guage). A debugger for an extensible language must
be extensible as well, to support debugging of modular
language extensions at the extension level. Minimally,
this means that users can step through the constructs
provided by the extension and see watch expressions

related to the extensions. In the foreach example, the
user would see the foreach statement in the source
code and the generated counter variable would not be
shown in the watch window.

This paper contributes a framework for building
debuggers for extensible, imperative languages, where
each language extension is debugged at its particu-
lar abstraction level.1 We illustrate the approach in
mbeddr, an extensible version of C implemented with
JetBrains MPS (http://jetbrains.com/mps).

1
This work is developed as part of the LWES project, sup-

ported by the German BMBF, FKZ 01/S11014.

2 Requirements on the Debugger

Debuggers for extensible languages should provide the
same functionality as the corresponding base language
debugger. In particular, this includes debugging com-
mands (stepping and breakpoints) and inspection of
the program state (watches and call stack).

In general, the execution of a program is debugged
by a debugger for the base language (e. g., gdb in case
of C). To enable debugging on the abstraction level of
extensions, a mapping must be implemented between
the base language debugger and the program as repre-
sented on the extension level. Figure 1 illustrates the
relationship and information flow between the exten-
sion and base level debugging mechanism: stepping
must be mapped from the extension level to the base
level and the program state must be represented in
terms of the extension level. This methodology is also
applicable to hierarchical language extensions.

Figure 1: Debugging interactions

GR1 Modularity: As language extensions, debug-
ger extensions must be modular and composable.
GR2 Genericity: New language extensions must not
require changes to the framework.
GR3 Ease of Extensibility: Implementing debug-
ging support should be relatively simple as developing
language extensions with language workbenches.

In addition, our domain (embedded software) leads
to the following requirements:
ER1 Limited Overhead: To reduce runtime and
memory overhead, the amount of debugger-specific
code generated into the executable should be limited.
ER2 Debugger Backend Independence: Due to
target device dependent compilers and debuggers, dif-
ferent C debuggers should be supported.

The next sections of this paper describe how
the proposed framework and its implementation for
mbeddr addresses these requirements.

3 Debugger Framework Architecture

The architecture can be separated into the specifica-

tion aspect: declarative description of language debug
behavior and execution aspect: generic and reusable
implemention of the extensible debugger framework.



3.1 Specification Aspect
The debugger specification is based on four groups of
abstractions: breakpoints, stepping, watches and stack

frames. To achieve modularitry (GR1) for each de-
bugger extension, language constructs are mapped to
these abstractions (GR2). In mbeddr, this mapping
is realized with a debugger specification DSL (GR3).

3.2 Execution Aspect
The execution aspect relies on traces and the AST
to provide debug support. This means, no debugger-
specific code is generated into the executable (ER1).

Figure 2: Execution Aspect

Figure 2 shows the components, which implement
this AST-based approach: Program Structure pro-
vides access to the AST. Trace Data is used to find
out the AST node (base and extension-level) that cor-
responds to a segment or line in the generated base-
language code, and vice versa. Debug Bridge pro-
vides a common API for di↵erent C Debuggers and
is implemented by the Eclipse CDT Debug Bridge[1]
(ER2). Languages contribute Debugger Extensions

(GR3), based on the abstractions discussed in Sec-
tion 3.1. Users interact with the debugger via the
Debugger UI, which serves as a frontend and is in-
tegrated into MPS. Finally, Mapper contains the al-
gorithms for mapping program state and debug com-
mands, thus integrating the other components.

4 Implementing Debugger Extensions

In this section we discuss some scenarios from mbeddr
where we have implemented debugger extensions us-
ing the previously described framework.

4.1 Polymorphic Calls
Performing a step into on a function call suspends the
debugger within the called C function. In mbeddr,
language extensions can provide additional constructs
with function semenatics (a callable) e. g., components
or state machines, which require the same behavior.
However, when performing a step into on a callable,
it is statically hard to determine which actual callable
will be executed.

In mbeddr, the components extension provides
interfaces with operations, as well as components
that provide and require these interfaces. The
component methods that implement these operations
are generated to base-level C functions. An interface
can be implemented by di↵erent components, each
implementation ending up in a di↵erent C function.
In order to enable step into behavior, we have to set
breakpoints in each possiblly called C function.

4.2 Mapping to Multiple Statements
In many cases an extension-level statement is mapped
to several statements or blocks on the base-level. So
stepping over the extension-level statement must step
over the whole block or list of statements in terms of
C. An example is the assert statement (used in test
cases) which is mapped to an if. The debugger has
to step over the complete if, independent of whether
the condition in the if evaluates to true or false.

4.3 Datatype Mapping
Language extensions may provide new data types in
addition to the existing base language data types.
During code generation, these additional data types
are translated to the base language data types. In
mbeddr, a boolean type is translated to C’s int type.
When inspecting the value of a watchable that is of
type boolean we expect the debugger to render the
int value either as true or false.

For mbeddr’s components a more complex mapping
is needed. As shown in the listing below, components
can contain instance variables (color) and provid-
ed/required ports (interfaces tl and driver). The code
generator translates components (TLights) to struct

declarations (TLMod comp TLights) with members:
(field color and port driver) for the declared instance
variables (color) and for each required port (driver).

1 component TLights {
2 provides ITrafficLights tl
3 requires IDriver driver
4 TLC color;
5 void setColor(TLC color) {
6 color = color;
7 }
8 }

struct TLMod_comp_TLights {
/* fields */
TLMod_TLC field_color;
/* required ports */
void* port_driver;

};

When debugging a component instance on the
extension-level, we expect the debugger to provide
watches for the fields, but with their respective
extension-level values and names. However, the mem-
bers for the ports should not be displayed. In the map-
ping implementation of component we must therefore
extract the fields from the repsective struct instance
and map the names and their respective values.

5 Future Directions

In the future, we will investigate support for multi-
staged transformations and to what extent multiple
alternative transformations for a single language con-
struct require changes to the framework architecture.

References

[1] Eclipse Foundation. Eclipse CDT (C/C++ Develop-

ment Tooling), http://www.eclipse.org/cdt/, 2012.

[2] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb.

mbeddr: an Extensible C-based Programming Lan-

guage and IDE for Embedded Systems. In SPLASH
2012.

[3] M. Voelter and E. Visser. Language extension

and composition with language workbenches. In

SPLASH/OOPSLA 2010.


	Introduction
	Requirements on the Debugger
	Debugger Framework Architecture
	Specification Aspect
	Execution Aspect

	Implementing Debugger Extensions
	Polymorphic Calls
	Mapping to Multiple Statements
	Datatype Mapping

	Future Directions

