
Multilingual

March 10, 2015

Overview
The Multilingual set of languages supports creating MPS content in several human

languages. As the term language is already highly overloaded in MPS, we stick to the
term multilingual (sometimes also called Internationalization, i18n, or Translation).

Fundamentally, we stick to the common way of translating Java applications, as de-
scribed in the Java documentation at http://docs.oracle.com/javase/tutorial/
i18n/. This means every multilingual string refers to a messageKey. The system tries to
resolve this key to an entry in a Java Properties file assigned to the the current (human)
language. These strings can be part of regular BaseLanguage code or constants in MPS
editors.

We also support translated domain elements (aka Concepts). Think of a Todo-List
implemented as an MPS language, and every task on the list can be entered and displayed
in several (human) languages.

Terms

Multilingual All of the following MPS languages: com.mbeddr.mpsutil.multilingual.common, com.mbeddr.mpsutil.multilingual.baseLanguage, com.mbeddr.mpsutil.multilingual.editor, com.mbeddr.mpsutil.multilingual.concept
MessageKey Instance of MessageKey representing one message shown to the user.
ResourceBundle Instance of ResourceBundle containing all messages used in the same model.
Current Language The human language currently selected to be shown to the user.

Settings
Multilingual adds its own Project Settings page to the MPS Settings dialog (Fig.1).

It’s on Project scope because the settings might be shared in a team.

Figure 1: Multilingual Settings Dialog

The available settings are:

• Show Translations Globally: ”Master switch” to enable display of multilingual ele-
ments at all.

1

http://docs.oracle.com/javase/tutorial/i18n/
http://docs.oracle.com/javase/tutorial/i18n/
http://localhost:8089/select/com.mbeddr.mpsutil/r:187f31fe-3d04-4058-81f8-811fd88b2492/568377005202721049/
http://localhost:8089/select/com.mbeddr.mpsutil/r:bd6eadde-0753-4ee6-b1ba-de5fed34eb94/2510545900188478757/
http://localhost:8089/select/com.mbeddr.mpsutil/r:2ac5d687-44a2-4ac0-8910-46b85baea724/2510545900188223994/
http://localhost:8089/select/com.mbeddr.mpsutil/r:87a7f03b-c727-4e1e-a070-f975f1186e14/2510545900187060791/


• Enable ”Show Translations” Intention: If the intention (see Chapter) should be
available.

• Current Language: Select the currentLanguage. By default, this language is the
current Locale.

Key Lookup
For both Chapter and Chapter, the actually used string is looked up by the referenced

messageKey. This happens only at runtime, i. e. when the BaseLanguage code is
executed or the editor is displayed. At creation time, the default value of the MessageKey
is displayed all the time.

The default value will also be used if the key cannot be resolved by the resourceBundle.
A ResourceBundle calls getBundle to get the appropriate Java ResourceBundle. The

parameters are:

• baseName: The value of property baseName.

• locale: The locale of the currentLanguage.

• classLoader: The ClassLoader of the Module the ResourceBundle is contained in.

The method getString is called with the used key as parameter. The key is composed
of:

• The value of property keyPrefix, if not empty.

• The value of property technicalKey, if not empty.

• The value of property MessageKey.name, if no technicalKey was given.

If we enter a MessgeKey that does not exist yet, there’s an intention to create this
key in the next ResourceBundle nearby.

Using Multilingual in BaseLanguage
We support two kinds of multilingual strings:

• MultilingualJavaString for simple Java strings.

• MultilingualJavaRichString for formatted Java strings, as defined in format.

Both can be used at any place a simple Java string constant can be used. Make
sure the MPS language com.mbeddr.mpsutil.multilingual.baseLanguage is listed as used
language.

The type of both of these strings is MultilingualJavaStringType, which is a subtype
of string.

In order to enter a multilingual string, and typing with an @ (at symbol); it will be
shown as a flag icon once we selected the desired kind of multilingual string.

For a simple string, continue with " (double quotation mark).
The more elaborate formatted version continues with ”’ (three single apostrophs).
Note that we can use all format specifiers available in Java.

2

http://localhost:8089/select/com.mbeddr.mpsutil/r:bd6eadde-0753-4ee6-b1ba-de5fed34eb94/2510545900188478757/


Figure 2: Example of MultilingualJavaString usage.

Figure 3: Example of MultilingualJavaRichString usage.

The parameters required by a RichStringMessageKey are passed to the Multilingual-
JavaRichString. They are checked for matching the correct type.

The actual default values (also for MultilingualJavaRichString) can only be edited
in the resourceBundle For reference, the ResourceBundle used for the examples of this
section are shown in Fig.4.

Figure 4: ResourceBundle used for examples in this section.

Using Multilingual in Concept Editors
We can translate two different things in a Concept Editor:

• MultilingualConstant translates constant strings in a concept editor.

• MultilingualAlias translates the alias of a concept.

3



Figure 5: Example usages of MultilingualConstant and MultilingualAlias in Concept
Editor

MultilingualConstant looks up the messageKey as described in Chapter.
MultilingualAlias uses the alias (without any prefixes) as key for the ResourceBundle.
The resourceBundle should be contained in the editor aspect containing the Multi-

lingualConstant or MultilingualAlias.
Using Multilingual in Domain Elements (aka Concepts)
For both multilingual in BaseLanguage and multilingual in Concept Editors, the trans-

lation is provided as part of development. In contrast, multilingual in Domain Elements
is meant to create MPS Language Concepts hosting content in different human languages.

Fig.6 shows the structure of multilingual concepts.

Figure 6: Concept structure for Multilingual Concepts

From a developer perspective, we’re mostly interested in IMultilingualContent and
its subconcepts MultilingualString and MultilingualText. They are meant as drop-
in replacements for a simple string property (in case of MultilingualString) or Text (in
case of MultilingualText).

Internally, they contain one or more StringTranslation or TextTranslation, re-
spectively. Each ITranslation hosts a translation into one Language.

By default, the user can enter strings or texts into the multilingual concepts just
as if they were their plain counterparts. They are considered the translation into the
currentLanguage (Fig.7).

If the setting settingShowTranslationsGlobally is true, a flag symbol is displayed
at each instance of IMultilingualContent (Fig.8).

4



Figure 7: Multilingual Concept without indication.

Figure 8: Multilingual Concept showing only the current language.

If the property showTranslations is set to true, a table of all available ITranslations
for this node is displayed. The user can add, edit, or remove any of them. This property
can be toggled by an intention if the setting settingEnableIntention is set to true
(Fig.9).

Figure 9: Multilingual Concept showing all available translations.

If an IMultilingualContent is queried for its content, it returns the ITranslation for
the currentLanguage. If this translation is not available, it returns the first translation.

For convenience, we also provide the concept interface IMultilingualNamedConcept.
Its meant as a drop-in replacement for INamedConcept, replacing the name property by
its multilingual counterpart.

Providing translated resources
As per Java convention, the translated resources follow the rules described in http://

docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle%
28java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader%29.

Currently, MPS reliably supports loading resources only from jar files. Therefore,
we’re advised to package our properties files into jar archives.

Make sure to match the baseName of your resource bundle and the messageKey of
your key, as described in Chapter. Add the jar to both Module Properties

5

http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle%28java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader%29
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle%28java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader%29
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle%28java.lang.String,%20java.util.Locale,%20java.lang.ClassLoader%29


• Common Tab, Java Classes Model Root (Fig.10)

• Java Tab, Libraries (Fig.11)

Figure 10: Example of resources jar in Module Common Tab.

Figure 11: Example of resources jar in Module Java Tab.

In the directory structure example shown in Fig.12, we use the baseName test.ts.mpsutil.multilingual.baseLanguage.

6



Figure 12: Directory structure to be used for ResourceBundle baseName
test.ts.mpsutil.multilingual.baseLanguage.

7


